summaryrefslogtreecommitdiff
path: root/docs/usage.rst
blob: e74e5af9b41d5a9683702db3a5281fc87dba3e53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
Usage
*****


KafkaConsumer
=============

.. code:: python

    from kafka import KafkaConsumer

    # To consume latest messages and auto-commit offsets
    consumer = KafkaConsumer('my-topic',
                             group_id='my-group',
                             bootstrap_servers=['localhost:9092'])
    for message in consumer:
        # message value and key are raw bytes -- decode if necessary!
        # e.g., for unicode: `message.value.decode('utf-8')`
        print ("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,
                                              message.offset, message.key,
                                              message.value))

    # consume earliest available messages, dont commit offsets
    KafkaConsumer(auto_offset_reset='earliest', enable_auto_commit=False)

    # consume json messages
    KafkaConsumer(value_deserializer=lambda m: json.loads(m.decode('ascii')))

    # consume msgpack 
    KafkaConsumer(value_deserializer=msgpack.unpackb)

    # StopIteration if no message after 1sec
    KafkaConsumer(consumer_timeout_ms=1000)

    # Subscribe to a regex topic pattern
    consumer = KafkaConsumer()
    consumer.subscribe(pattern='^awesome.*')

    # Use multiple consumers in parallel w/ 0.9 kafka brokers
    # typically you would run each on a different server / process / CPU
    consumer1 = KafkaConsumer('my-topic',
                              group_id='my-group',
                              bootstrap_servers='my.server.com')
    consumer2 = KafkaConsumer('my-topic',
                              group_id='my-group',
                              bootstrap_servers='my.server.com')


There are many configuration options for the consumer class. See
:class:`~kafka.KafkaConsumer` API documentation for more details.


SimpleProducer
==============

Asynchronous Mode
-----------------

.. code:: python

    from kafka import SimpleProducer, SimpleClient

    # To send messages asynchronously
    client = SimpleClient('localhost:9092')
    producer = SimpleProducer(client, async=True)
    producer.send_messages('my-topic', b'async message')

    # To send messages in batch. You can use any of the available
    # producers for doing this. The following producer will collect
    # messages in batch and send them to Kafka after 20 messages are
    # collected or every 60 seconds
    # Notes:
    # * If the producer dies before the messages are sent, there will be losses
    # * Call producer.stop() to send the messages and cleanup
    producer = SimpleProducer(client,
                              async=True,
                              batch_send_every_n=20,
                              batch_send_every_t=60)

Synchronous Mode
----------------

.. code:: python

    from kafka import SimpleProducer, SimpleClient

    # To send messages synchronously
    client = SimpleClient('localhost:9092')
    producer = SimpleProducer(client, async=False)

    # Note that the application is responsible for encoding messages to type bytes
    producer.send_messages('my-topic', b'some message')
    producer.send_messages('my-topic', b'this method', b'is variadic')

    # Send unicode message
    producer.send_messages('my-topic', u'你怎么样?'.encode('utf-8'))

    # To wait for acknowledgements
    # ACK_AFTER_LOCAL_WRITE : server will wait till the data is written to
    #                         a local log before sending response
    # ACK_AFTER_CLUSTER_COMMIT : server will block until the message is committed
    #                            by all in sync replicas before sending a response
    producer = SimpleProducer(client,
                              async=False,
                              req_acks=SimpleProducer.ACK_AFTER_LOCAL_WRITE,
                              ack_timeout=2000,
                              sync_fail_on_error=False)

    responses = producer.send_messages('my-topic', b'another message')
    for r in responses:
        logging.info(r.offset)


KeyedProducer
=============

.. code:: python

    from kafka import (
        SimpleClient, KeyedProducer,
        Murmur2Partitioner, RoundRobinPartitioner)

    kafka = SimpleClient('localhost:9092')

    # HashedPartitioner is default (currently uses python hash())
    producer = KeyedProducer(kafka)
    producer.send_messages(b'my-topic', b'key1', b'some message')
    producer.send_messages(b'my-topic', b'key2', b'this methode')

    # Murmur2Partitioner attempts to mirror the java client hashing
    producer = KeyedProducer(kafka, partitioner=Murmur2Partitioner)

    # Or just produce round-robin (or just use SimpleProducer)
    producer = KeyedProducer(kafka, partitioner=RoundRobinPartitioner)