1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
from __future__ import absolute_import
from collections import namedtuple
from copy import deepcopy
import logging
import random
import sys
import time
import six
from kafka import SimpleClient
from kafka.common import (
OffsetFetchRequestPayload, OffsetCommitRequestPayload,
OffsetRequestPayload, FetchRequestPayload,
check_error, NotLeaderForPartitionError, UnknownTopicOrPartitionError,
OffsetOutOfRangeError, RequestTimedOutError, KafkaMessage, ConsumerTimeout,
FailedPayloadsError, KafkaUnavailableError, KafkaConfigurationError
)
logger = logging.getLogger(__name__)
OffsetsStruct = namedtuple("OffsetsStruct", ["fetch", "highwater", "commit", "task_done"])
DEFAULT_CONSUMER_CONFIG = {
'client_id': __name__,
'group_id': None,
'bootstrap_servers': [],
'socket_timeout_ms': 30 * 1000,
'fetch_message_max_bytes': 1024 * 1024,
'auto_offset_reset': 'largest',
'fetch_min_bytes': 1,
'fetch_wait_max_ms': 100,
'refresh_leader_backoff_ms': 200,
'deserializer_class': lambda msg: msg,
'auto_commit_enable': False,
'auto_commit_interval_ms': 60 * 1000,
'auto_commit_interval_messages': None,
'consumer_timeout_ms': -1,
# Currently unused
'socket_receive_buffer_bytes': 64 * 1024,
'num_consumer_fetchers': 1,
'default_fetcher_backoff_ms': 1000,
'queued_max_message_chunks': 10,
'rebalance_max_retries': 4,
'rebalance_backoff_ms': 2000,
}
DEPRECATED_CONFIG_KEYS = {
'metadata_broker_list': 'bootstrap_servers',
}
class KafkaConsumer(object):
"""A simpler kafka consumer"""
DEFAULT_CONFIG = deepcopy(DEFAULT_CONSUMER_CONFIG)
def __init__(self, *topics, **configs):
self.configure(**configs)
self.set_topic_partitions(*topics)
def configure(self, **configs):
"""Configure the consumer instance
Configuration settings can be passed to constructor,
otherwise defaults will be used:
Keyword Arguments:
bootstrap_servers (list): List of initial broker nodes the consumer
should contact to bootstrap initial cluster metadata. This does
not have to be the full node list. It just needs to have at
least one broker that will respond to a Metadata API Request.
client_id (str): a unique name for this client. Defaults to
'kafka.consumer.kafka'.
group_id (str): the name of the consumer group to join,
Offsets are fetched / committed to this group name.
fetch_message_max_bytes (int, optional): Maximum bytes for each
topic/partition fetch request. Defaults to 1024*1024.
fetch_min_bytes (int, optional): Minimum amount of data the server
should return for a fetch request, otherwise wait up to
fetch_wait_max_ms for more data to accumulate. Defaults to 1.
fetch_wait_max_ms (int, optional): Maximum time for the server to
block waiting for fetch_min_bytes messages to accumulate.
Defaults to 100.
refresh_leader_backoff_ms (int, optional): Milliseconds to backoff
when refreshing metadata on errors (subject to random jitter).
Defaults to 200.
socket_timeout_ms (int, optional): TCP socket timeout in
milliseconds. Defaults to 30*1000.
auto_offset_reset (str, optional): A policy for resetting offsets on
OffsetOutOfRange errors. 'smallest' will move to the oldest
available message, 'largest' will move to the most recent. Any
ofther value will raise the exception. Defaults to 'largest'.
deserializer_class (callable, optional): Any callable that takes a
raw message value and returns a deserialized value. Defaults to
lambda msg: msg.
auto_commit_enable (bool, optional): Enabling auto-commit will cause
the KafkaConsumer to periodically commit offsets without an
explicit call to commit(). Defaults to False.
auto_commit_interval_ms (int, optional): If auto_commit_enabled,
the milliseconds between automatic offset commits. Defaults to
60 * 1000.
auto_commit_interval_messages (int, optional): If
auto_commit_enabled, a number of messages consumed between
automatic offset commits. Defaults to None (disabled).
consumer_timeout_ms (int, optional): number of millisecond to throw
a timeout exception to the consumer if no message is available
for consumption. Defaults to -1 (dont throw exception).
Configuration parameters are described in more detail at
http://kafka.apache.org/documentation.html#highlevelconsumerapi
"""
configs = self._deprecate_configs(**configs)
self._config = {}
for key in self.DEFAULT_CONFIG:
self._config[key] = configs.pop(key, self.DEFAULT_CONFIG[key])
if configs:
raise KafkaConfigurationError('Unknown configuration key(s): ' +
str(list(configs.keys())))
if self._config['auto_commit_enable']:
if not self._config['group_id']:
raise KafkaConfigurationError(
'KafkaConsumer configured to auto-commit '
'without required consumer group (group_id)'
)
# Check auto-commit configuration
if self._config['auto_commit_enable']:
logger.info("Configuring consumer to auto-commit offsets")
self._reset_auto_commit()
if not self._config['bootstrap_servers']:
raise KafkaConfigurationError(
'bootstrap_servers required to configure KafkaConsumer'
)
self._client = SimpleClient(
self._config['bootstrap_servers'],
client_id=self._config['client_id'],
timeout=(self._config['socket_timeout_ms'] / 1000.0)
)
def set_topic_partitions(self, *topics):
"""
Set the topic/partitions to consume
Optionally specify offsets to start from
Accepts types:
* str (utf-8): topic name (will consume all available partitions)
* tuple: (topic, partition)
* dict:
- { topic: partition }
- { topic: [partition list] }
- { topic: (partition tuple,) }
Optionally, offsets can be specified directly:
* tuple: (topic, partition, offset)
* dict: { (topic, partition): offset, ... }
Example:
.. code:: python
kafka = KafkaConsumer()
# Consume topic1-all; topic2-partition2; topic3-partition0
kafka.set_topic_partitions("topic1", ("topic2", 2), {"topic3": 0})
# Consume topic1-0 starting at offset 12, and topic2-1 at offset 45
# using tuples --
kafka.set_topic_partitions(("topic1", 0, 12), ("topic2", 1, 45))
# using dict --
kafka.set_topic_partitions({ ("topic1", 0): 12, ("topic2", 1): 45 })
"""
self._topics = []
self._client.load_metadata_for_topics()
# Setup offsets
self._offsets = OffsetsStruct(fetch=dict(),
commit=dict(),
highwater=dict(),
task_done=dict())
# Handle different topic types
for arg in topics:
# Topic name str -- all partitions
if isinstance(arg, (six.string_types, six.binary_type)):
topic = arg
for partition in self._client.get_partition_ids_for_topic(topic):
self._consume_topic_partition(topic, partition)
# (topic, partition [, offset]) tuple
elif isinstance(arg, tuple):
topic = arg[0]
partition = arg[1]
self._consume_topic_partition(topic, partition)
if len(arg) == 3:
offset = arg[2]
self._offsets.fetch[(topic, partition)] = offset
# { topic: partitions, ... } dict
elif isinstance(arg, dict):
for key, value in six.iteritems(arg):
# key can be string (a topic)
if isinstance(key, (six.string_types, six.binary_type)):
topic = key
# topic: partition
if isinstance(value, int):
self._consume_topic_partition(topic, value)
# topic: [ partition1, partition2, ... ]
elif isinstance(value, (list, tuple)):
for partition in value:
self._consume_topic_partition(topic, partition)
else:
raise KafkaConfigurationError(
'Unknown topic type '
'(dict key must be int or list/tuple of ints)'
)
# (topic, partition): offset
elif isinstance(key, tuple):
topic = key[0]
partition = key[1]
self._consume_topic_partition(topic, partition)
self._offsets.fetch[(topic, partition)] = value
else:
raise KafkaConfigurationError('Unknown topic type (%s)' % type(arg))
# If we have a consumer group, try to fetch stored offsets
if self._config['group_id']:
self._get_commit_offsets()
# Update missing fetch/commit offsets
for topic_partition in self._topics:
# Commit offsets default is None
if topic_partition not in self._offsets.commit:
self._offsets.commit[topic_partition] = None
# Skip if we already have a fetch offset from user args
if topic_partition not in self._offsets.fetch:
# Fetch offsets default is (1) commit
if self._offsets.commit[topic_partition] is not None:
self._offsets.fetch[topic_partition] = self._offsets.commit[topic_partition]
# or (2) auto reset
else:
self._offsets.fetch[topic_partition] = self._reset_partition_offset(topic_partition)
# highwater marks (received from server on fetch response)
# and task_done (set locally by user)
# should always get initialized to None
self._reset_highwater_offsets()
self._reset_task_done_offsets()
# Reset message iterator in case we were in the middle of one
self._reset_message_iterator()
def close(self):
"""Close this consumer's underlying client."""
self._client.close()
def next(self):
"""Return the next available message
Blocks indefinitely unless consumer_timeout_ms > 0
Returns:
a single KafkaMessage from the message iterator
Raises:
ConsumerTimeout after consumer_timeout_ms and no message
Note:
This is also the method called internally during iteration
"""
self._set_consumer_timeout_start()
while True:
try:
return six.next(self._get_message_iterator())
# Handle batch completion
except StopIteration:
self._reset_message_iterator()
self._check_consumer_timeout()
def fetch_messages(self):
"""Sends FetchRequests for all topic/partitions set for consumption
Returns:
Generator that yields KafkaMessage structs
after deserializing with the configured `deserializer_class`
Note:
Refreshes metadata on errors, and resets fetch offset on
OffsetOutOfRange, per the configured `auto_offset_reset` policy
See Also:
Key KafkaConsumer configuration parameters:
* `fetch_message_max_bytes`
* `fetch_max_wait_ms`
* `fetch_min_bytes`
* `deserializer_class`
* `auto_offset_reset`
"""
max_bytes = self._config['fetch_message_max_bytes']
max_wait_time = self._config['fetch_wait_max_ms']
min_bytes = self._config['fetch_min_bytes']
if not self._topics:
raise KafkaConfigurationError('No topics or partitions configured')
if not self._offsets.fetch:
raise KafkaConfigurationError(
'No fetch offsets found when calling fetch_messages'
)
fetches = [FetchRequestPayload(topic, partition,
self._offsets.fetch[(topic, partition)],
max_bytes)
for (topic, partition) in self._topics]
# send_fetch_request will batch topic/partition requests by leader
responses = self._client.send_fetch_request(
fetches,
max_wait_time=max_wait_time,
min_bytes=min_bytes,
fail_on_error=False
)
for resp in responses:
if isinstance(resp, FailedPayloadsError):
logger.warning('FailedPayloadsError attempting to fetch data')
self._refresh_metadata_on_error()
continue
topic = resp.topic
partition = resp.partition
try:
check_error(resp)
except OffsetOutOfRangeError:
logger.warning('OffsetOutOfRange: topic %s, partition %d, '
'offset %d (Highwatermark: %d)',
topic, partition,
self._offsets.fetch[(topic, partition)],
resp.highwaterMark)
# Reset offset
self._offsets.fetch[(topic, partition)] = (
self._reset_partition_offset((topic, partition))
)
continue
except NotLeaderForPartitionError:
logger.warning("NotLeaderForPartitionError for %s - %d. "
"Metadata may be out of date",
topic, partition)
self._refresh_metadata_on_error()
continue
except RequestTimedOutError:
logger.warning("RequestTimedOutError for %s - %d",
topic, partition)
continue
# Track server highwater mark
self._offsets.highwater[(topic, partition)] = resp.highwaterMark
# Yield each message
# Kafka-python could raise an exception during iteration
# we are not catching -- user will need to address
for (offset, message) in resp.messages:
# deserializer_class could raise an exception here
val = self._config['deserializer_class'](message.value)
msg = KafkaMessage(topic, partition, offset, message.key, val)
# in some cases the server will return earlier messages
# than we requested. skip them per kafka spec
if offset < self._offsets.fetch[(topic, partition)]:
logger.debug('message offset less than fetched offset '
'skipping: %s', msg)
continue
# Only increment fetch offset
# if we safely got the message and deserialized
self._offsets.fetch[(topic, partition)] = offset + 1
# Then yield to user
yield msg
def get_partition_offsets(self, topic, partition, request_time_ms, max_num_offsets):
"""Request available fetch offsets for a single topic/partition
Keyword Arguments:
topic (str): topic for offset request
partition (int): partition for offset request
request_time_ms (int): Used to ask for all messages before a
certain time (ms). There are two special values.
Specify -1 to receive the latest offset (i.e. the offset of the
next coming message) and -2 to receive the earliest available
offset. Note that because offsets are pulled in descending
order, asking for the earliest offset will always return you a
single element.
max_num_offsets (int): Maximum offsets to include in the OffsetResponse
Returns:
a list of offsets in the OffsetResponse submitted for the provided
topic / partition. See:
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetAPI
"""
reqs = [OffsetRequestPayload(topic, partition, request_time_ms, max_num_offsets)]
(resp,) = self._client.send_offset_request(reqs)
check_error(resp)
# Just for sanity..
# probably unnecessary
assert resp.topic == topic
assert resp.partition == partition
return resp.offsets
def offsets(self, group=None):
"""Get internal consumer offset values
Keyword Arguments:
group: Either "fetch", "commit", "task_done", or "highwater".
If no group specified, returns all groups.
Returns:
A copy of internal offsets struct
"""
if not group:
return {
'fetch': self.offsets('fetch'),
'commit': self.offsets('commit'),
'task_done': self.offsets('task_done'),
'highwater': self.offsets('highwater')
}
else:
return dict(deepcopy(getattr(self._offsets, group)))
def task_done(self, message):
"""Mark a fetched message as consumed.
Offsets for messages marked as "task_done" will be stored back
to the kafka cluster for this consumer group on commit()
Arguments:
message (KafkaMessage): the message to mark as complete
Returns:
True, unless the topic-partition for this message has not
been configured for the consumer. In normal operation, this
should not happen. But see github issue 364.
"""
topic_partition = (message.topic, message.partition)
if topic_partition not in self._topics:
logger.warning('Unrecognized topic/partition in task_done message: '
'{0}:{1}'.format(*topic_partition))
return False
offset = message.offset
# Warn on non-contiguous offsets
prev_done = self._offsets.task_done[topic_partition]
if prev_done is not None and offset != (prev_done + 1):
logger.warning('Marking task_done on a non-continuous offset: %d != %d + 1',
offset, prev_done)
# Warn on smaller offsets than previous commit
# "commit" offsets are actually the offset of the next message to fetch.
prev_commit = self._offsets.commit[topic_partition]
if prev_commit is not None and ((offset + 1) <= prev_commit):
logger.warning('Marking task_done on a previously committed offset?: %d (+1) <= %d',
offset, prev_commit)
self._offsets.task_done[topic_partition] = offset
# Check for auto-commit
if self._does_auto_commit_messages():
self._incr_auto_commit_message_count()
if self._should_auto_commit():
self.commit()
return True
def commit(self):
"""Store consumed message offsets (marked via task_done())
to kafka cluster for this consumer_group.
Returns:
True on success, or False if no offsets were found for commit
Note:
this functionality requires server version >=0.8.1.1
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetCommit/FetchAPI
"""
if not self._config['group_id']:
logger.warning('Cannot commit without a group_id!')
raise KafkaConfigurationError(
'Attempted to commit offsets '
'without a configured consumer group (group_id)'
)
# API supports storing metadata with each commit
# but for now it is unused
metadata = b''
offsets = self._offsets.task_done
commits = []
for topic_partition, task_done_offset in six.iteritems(offsets):
# Skip if None
if task_done_offset is None:
continue
# Commit offsets as the next offset to fetch
# which is consistent with the Java Client
# task_done is marked by messages consumed,
# so add one to mark the next message for fetching
commit_offset = (task_done_offset + 1)
# Skip if no change from previous committed
if commit_offset == self._offsets.commit[topic_partition]:
continue
commits.append(
OffsetCommitRequestPayload(topic_partition[0], topic_partition[1],
commit_offset, metadata)
)
if commits:
logger.info('committing consumer offsets to group %s', self._config['group_id'])
resps = self._client.send_offset_commit_request(
self._config['group_id'], commits,
fail_on_error=False
)
for r in resps:
check_error(r)
topic_partition = (r.topic, r.partition)
task_done = self._offsets.task_done[topic_partition]
self._offsets.commit[topic_partition] = (task_done + 1)
if self._config['auto_commit_enable']:
self._reset_auto_commit()
return True
else:
logger.info('No new offsets found to commit in group %s', self._config['group_id'])
return False
#
# Topic/partition management private methods
#
def _consume_topic_partition(self, topic, partition):
if not isinstance(partition, int):
raise KafkaConfigurationError('Unknown partition type (%s) '
'-- expected int' % type(partition))
if topic not in self._client.topic_partitions:
raise UnknownTopicOrPartitionError("Topic %s not found in broker metadata" % topic)
if partition not in self._client.get_partition_ids_for_topic(topic):
raise UnknownTopicOrPartitionError("Partition %d not found in Topic %s "
"in broker metadata" % (partition, topic))
logger.info("Configuring consumer to fetch topic '%s', partition %d", topic, partition)
self._topics.append((topic, partition))
def _refresh_metadata_on_error(self):
refresh_ms = self._config['refresh_leader_backoff_ms']
jitter_pct = 0.20
sleep_ms = random.randint(
int((1.0 - 0.5 * jitter_pct) * refresh_ms),
int((1.0 + 0.5 * jitter_pct) * refresh_ms)
)
while True:
logger.info("Sleeping for refresh_leader_backoff_ms: %d", sleep_ms)
time.sleep(sleep_ms / 1000.0)
try:
self._client.load_metadata_for_topics()
except KafkaUnavailableError:
logger.warning("Unable to refresh topic metadata... cluster unavailable")
self._check_consumer_timeout()
else:
logger.info("Topic metadata refreshed")
return
#
# Offset-managment private methods
#
def _get_commit_offsets(self):
logger.info("Consumer fetching stored offsets")
for topic_partition in self._topics:
(resp,) = self._client.send_offset_fetch_request(
self._config['group_id'],
[OffsetFetchRequestPayload(topic_partition[0], topic_partition[1])],
fail_on_error=False)
try:
check_error(resp)
# API spec says server wont set an error here
# but 0.8.1.1 does actually...
except UnknownTopicOrPartitionError:
pass
# -1 offset signals no commit is currently stored
if resp.offset == -1:
self._offsets.commit[topic_partition] = None
# Otherwise we committed the stored offset
# and need to fetch the next one
else:
self._offsets.commit[topic_partition] = resp.offset
def _reset_highwater_offsets(self):
for topic_partition in self._topics:
self._offsets.highwater[topic_partition] = None
def _reset_task_done_offsets(self):
for topic_partition in self._topics:
self._offsets.task_done[topic_partition] = None
def _reset_partition_offset(self, topic_partition):
(topic, partition) = topic_partition
LATEST = -1
EARLIEST = -2
request_time_ms = None
if self._config['auto_offset_reset'] == 'largest':
request_time_ms = LATEST
elif self._config['auto_offset_reset'] == 'smallest':
request_time_ms = EARLIEST
else:
# Let's raise an reasonable exception type if user calls
# outside of an exception context
if sys.exc_info() == (None, None, None):
raise OffsetOutOfRangeError('Cannot reset partition offsets without a '
'valid auto_offset_reset setting '
'(largest|smallest)')
# Otherwise we should re-raise the upstream exception
# b/c it typically includes additional data about
# the request that triggered it, and we do not want to drop that
raise # pylint: disable=E0704
(offset, ) = self.get_partition_offsets(topic, partition,
request_time_ms, max_num_offsets=1)
return offset
#
# Consumer Timeout private methods
#
def _set_consumer_timeout_start(self):
self._consumer_timeout = False
if self._config['consumer_timeout_ms'] >= 0:
self._consumer_timeout = time.time() + (self._config['consumer_timeout_ms'] / 1000.0)
def _check_consumer_timeout(self):
if self._consumer_timeout and time.time() > self._consumer_timeout:
raise ConsumerTimeout('Consumer timed out after %d ms' % + self._config['consumer_timeout_ms'])
#
# Autocommit private methods
#
def _should_auto_commit(self):
if self._does_auto_commit_ms():
if time.time() >= self._next_commit_time:
return True
if self._does_auto_commit_messages():
if self._uncommitted_message_count >= self._config['auto_commit_interval_messages']:
return True
return False
def _reset_auto_commit(self):
self._uncommitted_message_count = 0
self._next_commit_time = None
if self._does_auto_commit_ms():
self._next_commit_time = time.time() + (self._config['auto_commit_interval_ms'] / 1000.0)
def _incr_auto_commit_message_count(self, n=1):
self._uncommitted_message_count += n
def _does_auto_commit_ms(self):
if not self._config['auto_commit_enable']:
return False
conf = self._config['auto_commit_interval_ms']
if conf is not None and conf > 0:
return True
return False
def _does_auto_commit_messages(self):
if not self._config['auto_commit_enable']:
return False
conf = self._config['auto_commit_interval_messages']
if conf is not None and conf > 0:
return True
return False
#
# Message iterator private methods
#
def __iter__(self):
return self
def __next__(self):
return self.next()
def _get_message_iterator(self):
# Fetch a new batch if needed
if self._msg_iter is None:
self._msg_iter = self.fetch_messages()
return self._msg_iter
def _reset_message_iterator(self):
self._msg_iter = None
#
# python private methods
#
def __repr__(self):
return '<{0} topics=({1})>'.format(
self.__class__.__name__,
'|'.join(["%s-%d" % topic_partition
for topic_partition in self._topics])
)
#
# other private methods
#
def _deprecate_configs(self, **configs):
for old, new in six.iteritems(DEPRECATED_CONFIG_KEYS):
if old in configs:
logger.warning('Deprecated Kafka Consumer configuration: %s. '
'Please use %s instead.', old, new)
old_value = configs.pop(old)
if new not in configs:
configs[new] = old_value
return configs
|