1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
import collections
import itertools
import logging
import six
from .abstract import AbstractPartitionAssignor
from ...common import TopicPartition
from ..protocol import ConsumerProtocolMemberMetadata, ConsumerProtocolMemberAssignment
log = logging.getLogger(__name__)
class RoundRobinPartitionAssignor(AbstractPartitionAssignor):
"""
The roundrobin assignor lays out all the available partitions and all the
available consumers. It then proceeds to do a roundrobin assignment from
partition to consumer. If the subscriptions of all consumer instances are
identical, then the partitions will be uniformly distributed. (i.e., the
partition ownership counts will be within a delta of exactly one across all
consumers.)
For example, suppose there are two consumers C0 and C1, two topics t0 and
t1, and each topic has 3 partitions, resulting in partitions t0p0, t0p1,
t0p2, t1p0, t1p1, and t1p2.
The assignment will be:
C0: [t0p0, t0p2, t1p1]
C1: [t0p1, t1p0, t1p2]
"""
name = 'roundrobin'
version = 0
@classmethod
def assign(cls, cluster, member_metadata):
all_topics = set()
for metadata in six.itervalues(member_metadata):
all_topics.update(metadata.subscription)
all_topic_partitions = []
for topic in all_topics:
partitions = cluster.partitions_for_topic(topic)
if partitions is None:
log.warning('No partition metadata for topic %s', topic)
continue
for partition in partitions:
all_topic_partitions.append(TopicPartition(topic, partition))
all_topic_partitions.sort()
# construct {member_id: {topic: [partition, ...]}}
assignment = collections.defaultdict(lambda: collections.defaultdict(list))
member_iter = itertools.cycle(sorted(member_metadata.keys()))
for partition in all_topic_partitions:
member_id = next(member_iter)
# Because we constructed all_topic_partitions from the set of
# member subscribed topics, we should be safe assuming that
# each topic in all_topic_partitions is in at least one member
# subscription; otherwise this could yield an infinite loop
while partition.topic not in member_metadata[member_id].subscription:
member_id = next(member_iter)
assignment[member_id][partition.topic].append(partition.partition)
protocol_assignment = {}
for member_id in member_metadata:
protocol_assignment[member_id] = ConsumerProtocolMemberAssignment(
cls.version,
sorted(assignment[member_id].items()),
b'')
return protocol_assignment
@classmethod
def metadata(cls, topics):
return ConsumerProtocolMemberMetadata(cls.version, list(topics), b'')
@classmethod
def on_assignment(cls, assignment):
pass
|