summaryrefslogtreecommitdiff
path: root/kafka/streams/processor/partition_group.py
blob: 4e726a9be6ead19b0e7dfd86d5b32744e73d0a74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 * <p>
 * http://www.apache.org/licenses/LICENSE-2.0
 * <p>
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
"""
from __future__ import absolute_import

import collections
import heapq

import kafka.errors as Errors
from kafka.structs import TopicPartition
from .record_queue import RecordQueue


TaskId = collections.namedtuple('TaskId', 'topic_group_id partition_id')


class RecordInfo(object):
    def __init__(self):
        self.queue = None

    def node(self):
        return self.queue.source

    def partition(self):
        return self.queue.partition

    def queue(self):
        return self.queue


class PartitionGroup(object):
    """A PartitionGroup is composed from a set of partitions. It also maintains
    the timestamp of this group, hence the associated task as the min timestamp
    across all partitions in the group.
    """
    def __init__(self, partition_queues, timestamp_extractor):
        self._queues_by_time = [] # heapq
        self._partition_queues = partition_queues
        self._timestamp_extractor = timestamp_extractor
        self._total_buffered = 0

    def next_record(self, record_info):
        """Get the next record and queue

        Returns: (timestamp, ConsumerRecord)
        """
        timestamp = record = queue = None

        if self._queues_by_time:
            _, queue = heapq.heappop(self._queues_by_time)

            # get the first record from this queue.
            timestamp, record = queue.poll()

            if queue:
                heapq.heappush(self._queues_by_time, (queue.timestamp(), queue))

        record_info.queue = queue

        if record:
            self._total_buffered -= 1

        return timestamp, record

    def add_raw_records(self, partition, raw_records):
        """Adds raw records to this partition group

        Arguments:
            partition (TopicPartition): the partition
            raw_records (list of ConsumerRecord): the raw records

        Returns: the queue size for the partition
        """
        record_queue = self._partition_queues[partition]

        old_size = record_queue.size()
        new_size = record_queue.add_raw_records(raw_records, self._timestamp_extractor)

        # add this record queue to be considered for processing in the future
        # if it was empty before
        if old_size == 0 and new_size > 0:
            heapq.heappush(self._queues_by_time, (record_queue.timestamp(), record_queue))

        self._total_buffered += new_size - old_size

        return new_size

    def partitions(self):
        return set(self._partition_queues.keys())

    def timestamp(self):
        """Return the timestamp of this partition group
        as the smallest partition timestamp among all its partitions
        """
        # we should always return the smallest timestamp of all partitions
        # to avoid group partition time goes backward
        timestamp = float('inf')
        for queue in self._partition_queues.values():
            if timestamp > queue.timestamp():
                timestamp = queue.timestamp()
        return timestamp

    def num_buffered(self, partition=None):
        if partition is None:
            return self._total_buffered
        record_queue = self._partition_queues.get(partition)
        if not record_queue:
            raise Errors.IllegalStateError('Record partition does not belong to this partition-group.')
        return record_queue.size()

    def top_queue_size(self):
        if not self._queues_by_time:
            return 0
        return self._queues_by_time[0][1].size() # XXX RecordQueue.__len__

    def close(self):
        self._queues_by_time = []
        self._partition_queues.clear()


def partition_grouper(topic_groups, metadata):
    """Assign partitions to task/topic groups

    Arguments:
        topic_groups ({topic_group_id: [topics]})
        metadata (kafka.Cluster)

    Returns: {TaskId: set([TopicPartition])}
    """
    groups = {}
    for topic_group_id, topic_group in topic_groups.items():

        partitions = set()
        for topic in topic_group:
            partitions.update(metadata.partitions_for_topic(topic))

        for partition_id in partitions:
            group = set()

            for topic in topic_group:
                if partition_id in metadata.partitions_for_topic(topic):
                    group.add(TopicPartition(topic, partition_id))
            groups[TaskId(topic_group_id, partition_id)] = group

    return groups