summaryrefslogtreecommitdiff
path: root/networkx/algorithms/approximation/tests/test_kcomponents.py
blob: 6b280313966da33b7be4582568c3f08616629fe5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Test for approximation to k-components algorithm
import pytest

import networkx as nx
from networkx.algorithms.approximation import k_components
from networkx.algorithms.approximation.kcomponents import _AntiGraph, _same


def build_k_number_dict(k_components):
    k_num = {}
    for k, comps in sorted(k_components.items()):
        for comp in comps:
            for node in comp:
                k_num[node] = k
    return k_num


##
# Some nice synthetic graphs
##


def graph_example_1():
    G = nx.convert_node_labels_to_integers(
        nx.grid_graph([5, 5]), label_attribute="labels"
    )
    rlabels = nx.get_node_attributes(G, "labels")
    labels = {v: k for k, v in rlabels.items()}

    for nodes in [
        (labels[(0, 0)], labels[(1, 0)]),
        (labels[(0, 4)], labels[(1, 4)]),
        (labels[(3, 0)], labels[(4, 0)]),
        (labels[(3, 4)], labels[(4, 4)]),
    ]:
        new_node = G.order() + 1
        # Petersen graph is triconnected
        P = nx.petersen_graph()
        G = nx.disjoint_union(G, P)
        # Add two edges between the grid and P
        G.add_edge(new_node + 1, nodes[0])
        G.add_edge(new_node, nodes[1])
        # K5 is 4-connected
        K = nx.complete_graph(5)
        G = nx.disjoint_union(G, K)
        # Add three edges between P and K5
        G.add_edge(new_node + 2, new_node + 11)
        G.add_edge(new_node + 3, new_node + 12)
        G.add_edge(new_node + 4, new_node + 13)
        # Add another K5 sharing a node
        G = nx.disjoint_union(G, K)
        nbrs = G[new_node + 10]
        G.remove_node(new_node + 10)
        for nbr in nbrs:
            G.add_edge(new_node + 17, nbr)
        G.add_edge(new_node + 16, new_node + 5)
    return G


def torrents_and_ferraro_graph():
    G = nx.convert_node_labels_to_integers(
        nx.grid_graph([5, 5]), label_attribute="labels"
    )
    rlabels = nx.get_node_attributes(G, "labels")
    labels = {v: k for k, v in rlabels.items()}

    for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]:
        new_node = G.order() + 1
        # Petersen graph is triconnected
        P = nx.petersen_graph()
        G = nx.disjoint_union(G, P)
        # Add two edges between the grid and P
        G.add_edge(new_node + 1, nodes[0])
        G.add_edge(new_node, nodes[1])
        # K5 is 4-connected
        K = nx.complete_graph(5)
        G = nx.disjoint_union(G, K)
        # Add three edges between P and K5
        G.add_edge(new_node + 2, new_node + 11)
        G.add_edge(new_node + 3, new_node + 12)
        G.add_edge(new_node + 4, new_node + 13)
        # Add another K5 sharing a node
        G = nx.disjoint_union(G, K)
        nbrs = G[new_node + 10]
        G.remove_node(new_node + 10)
        for nbr in nbrs:
            G.add_edge(new_node + 17, nbr)
        # Commenting this makes the graph not biconnected !!
        # This stupid mistake make one reviewer very angry :P
        G.add_edge(new_node + 16, new_node + 8)

    for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]:
        new_node = G.order() + 1
        # Petersen graph is triconnected
        P = nx.petersen_graph()
        G = nx.disjoint_union(G, P)
        # Add two edges between the grid and P
        G.add_edge(new_node + 1, nodes[0])
        G.add_edge(new_node, nodes[1])
        # K5 is 4-connected
        K = nx.complete_graph(5)
        G = nx.disjoint_union(G, K)
        # Add three edges between P and K5
        G.add_edge(new_node + 2, new_node + 11)
        G.add_edge(new_node + 3, new_node + 12)
        G.add_edge(new_node + 4, new_node + 13)
        # Add another K5 sharing two nodes
        G = nx.disjoint_union(G, K)
        nbrs = G[new_node + 10]
        G.remove_node(new_node + 10)
        for nbr in nbrs:
            G.add_edge(new_node + 17, nbr)
        nbrs2 = G[new_node + 9]
        G.remove_node(new_node + 9)
        for nbr in nbrs2:
            G.add_edge(new_node + 18, nbr)
    return G


# Helper function


def _check_connectivity(G):
    result = k_components(G)
    for k, components in result.items():
        if k < 3:
            continue
        for component in components:
            C = G.subgraph(component)
            K = nx.node_connectivity(C)
            assert K >= k


def test_torrents_and_ferraro_graph():
    G = torrents_and_ferraro_graph()
    _check_connectivity(G)


def test_example_1():
    G = graph_example_1()
    _check_connectivity(G)


def test_karate_0():
    G = nx.karate_club_graph()
    _check_connectivity(G)


def test_karate_1():
    karate_k_num = {
        0: 4,
        1: 4,
        2: 4,
        3: 4,
        4: 3,
        5: 3,
        6: 3,
        7: 4,
        8: 4,
        9: 2,
        10: 3,
        11: 1,
        12: 2,
        13: 4,
        14: 2,
        15: 2,
        16: 2,
        17: 2,
        18: 2,
        19: 3,
        20: 2,
        21: 2,
        22: 2,
        23: 3,
        24: 3,
        25: 3,
        26: 2,
        27: 3,
        28: 3,
        29: 3,
        30: 4,
        31: 3,
        32: 4,
        33: 4,
    }
    approx_karate_k_num = karate_k_num.copy()
    approx_karate_k_num[24] = 2
    approx_karate_k_num[25] = 2
    G = nx.karate_club_graph()
    k_comps = k_components(G)
    k_num = build_k_number_dict(k_comps)
    assert k_num in (karate_k_num, approx_karate_k_num)


def test_example_1_detail_3_and_4():
    G = graph_example_1()
    result = k_components(G)
    # In this example graph there are 8 3-components, 4 with 15 nodes
    # and 4 with 5 nodes.
    assert len(result[3]) == 8
    assert len([c for c in result[3] if len(c) == 15]) == 4
    assert len([c for c in result[3] if len(c) == 5]) == 4
    # There are also 8 4-components all with 5 nodes.
    assert len(result[4]) == 8
    assert all(len(c) == 5 for c in result[4])
    # Finally check that the k-components detected have actually node
    # connectivity >= k.
    for k, components in result.items():
        if k < 3:
            continue
        for component in components:
            K = nx.node_connectivity(G.subgraph(component))
            assert K >= k


def test_directed():
    with pytest.raises(nx.NetworkXNotImplemented):
        G = nx.gnp_random_graph(10, 0.4, directed=True)
        kc = k_components(G)


def test_same():
    equal = {"A": 2, "B": 2, "C": 2}
    slightly_different = {"A": 2, "B": 1, "C": 2}
    different = {"A": 2, "B": 8, "C": 18}
    assert _same(equal)
    assert not _same(slightly_different)
    assert _same(slightly_different, tol=1)
    assert not _same(different)
    assert not _same(different, tol=4)


class TestAntiGraph:
    @classmethod
    def setup_class(cls):
        cls.Gnp = nx.gnp_random_graph(20, 0.8)
        cls.Anp = _AntiGraph(nx.complement(cls.Gnp))
        cls.Gd = nx.davis_southern_women_graph()
        cls.Ad = _AntiGraph(nx.complement(cls.Gd))
        cls.Gk = nx.karate_club_graph()
        cls.Ak = _AntiGraph(nx.complement(cls.Gk))
        cls.GA = [(cls.Gnp, cls.Anp), (cls.Gd, cls.Ad), (cls.Gk, cls.Ak)]

    def test_size(self):
        for G, A in self.GA:
            n = G.order()
            s = len(list(G.edges())) + len(list(A.edges()))
            assert s == (n * (n - 1)) / 2

    def test_degree(self):
        for G, A in self.GA:
            assert sorted(G.degree()) == sorted(A.degree())

    def test_core_number(self):
        for G, A in self.GA:
            assert nx.core_number(G) == nx.core_number(A)

    def test_connected_components(self):
        for G, A in self.GA:
            gc = [set(c) for c in nx.connected_components(G)]
            ac = [set(c) for c in nx.connected_components(A)]
            for comp in ac:
                assert comp in gc

    def test_adj(self):
        for G, A in self.GA:
            for n, nbrs in G.adj.items():
                a_adj = sorted((n, sorted(ad)) for n, ad in A.adj.items())
                g_adj = sorted((n, sorted(ad)) for n, ad in G.adj.items())
                assert a_adj == g_adj

    def test_adjacency(self):
        for G, A in self.GA:
            a_adj = list(A.adjacency())
            for n, nbrs in G.adjacency():
                assert (n, set(nbrs)) in a_adj

    def test_neighbors(self):
        for G, A in self.GA:
            node = list(G.nodes())[0]
            assert set(G.neighbors(node)) == set(A.neighbors(node))

    def test_node_not_in_graph(self):
        for G, A in self.GA:
            node = "non_existent_node"
            pytest.raises(nx.NetworkXError, A.neighbors, node)
            pytest.raises(nx.NetworkXError, G.neighbors, node)

    def test_degree_thingraph(self):
        for G, A in self.GA:
            node = list(G.nodes())[0]
            nodes = list(G.nodes())[1:4]
            assert G.degree(node) == A.degree(node)
            assert sum(d for n, d in G.degree()) == sum(d for n, d in A.degree())
            # AntiGraph is a ThinGraph, so all the weights are 1
            assert sum(d for n, d in A.degree()) == sum(
                d for n, d in A.degree(weight="weight")
            )
            assert sum(d for n, d in G.degree(nodes)) == sum(
                d for n, d in A.degree(nodes)
            )