1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
"""
Operations on graphs including union, intersection, difference.
"""
import networkx as nx
__all__ = [
"union",
"compose",
"disjoint_union",
"intersection",
"difference",
"symmetric_difference",
"full_join",
]
@nx._dispatch(graphs="G,H")
def union(G, H, rename=()):
"""Combine graphs G and H. The names of nodes must be unique.
A name collision between the graphs will raise an exception.
A renaming facility is provided to avoid name collisions.
Parameters
----------
G, H : graph
A NetworkX graph
rename : iterable , optional
Node names of G and H can be changed by specifying the tuple
rename=('G-','H-') (for example). Node "u" in G is then renamed
"G-u" and "v" in H is renamed "H-v".
Returns
-------
U : A union graph with the same type as G.
See Also
--------
compose
:func:`~networkx.Graph.update`
disjoint_union
Notes
-----
To combine graphs that have common nodes, consider compose(G, H)
or the method, Graph.update().
disjoint_union() is similar to union() except that it avoids name clashes
by relabeling the nodes with sequential integers.
Edge and node attributes are propagated from G and H to the union graph.
Graph attributes are also propagated, but if they are present in both G and H,
then the value from H is used.
Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
>>> H = nx.Graph([(0, 1), (0, 3), (1, 3), (1, 2)])
>>> U = nx.union(G, H, rename=("G", "H"))
>>> U.nodes
NodeView(('G0', 'G1', 'G2', 'H0', 'H1', 'H3', 'H2'))
>>> U.edges
EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G1', 'G2'), ('H0', 'H1'), ('H0', 'H3'), ('H1', 'H3'), ('H1', 'H2')])
"""
return nx.union_all([G, H], rename)
@nx._dispatch(graphs="G,H")
def disjoint_union(G, H):
"""Combine graphs G and H. The nodes are assumed to be unique (disjoint).
This algorithm automatically relabels nodes to avoid name collisions.
Parameters
----------
G,H : graph
A NetworkX graph
Returns
-------
U : A union graph with the same type as G.
See Also
--------
union
compose
:func:`~networkx.Graph.update`
Notes
-----
A new graph is created, of the same class as G. It is recommended
that G and H be either both directed or both undirected.
The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
relabeled len(G) to len(G)+len(H)-1.
Renumbering forces G and H to be disjoint, so no exception is ever raised for a name collision.
To preserve the check for common nodes, use union().
Edge and node attributes are propagated from G and H to the union graph.
Graph attributes are also propagated, but if they are present in both G and H,
then the value from H is used.
To combine graphs that have common nodes, consider compose(G, H)
or the method, Graph.update().
Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
>>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
>>> G.nodes[0]["key1"] = 5
>>> H.nodes[0]["key2"] = 10
>>> U = nx.disjoint_union(G, H)
>>> U.nodes(data=True)
NodeDataView({0: {'key1': 5}, 1: {}, 2: {}, 3: {'key2': 10}, 4: {}, 5: {}, 6: {}})
>>> U.edges
EdgeView([(0, 1), (0, 2), (1, 2), (3, 4), (4, 6), (5, 6)])
"""
return nx.disjoint_union_all([G, H])
@nx._dispatch(graphs="G,H")
def intersection(G, H):
"""Returns a new graph that contains only the nodes and the edges that exist in
both G and H.
Parameters
----------
G,H : graph
A NetworkX graph. G and H can have different node sets but must be both graphs or both multigraphs.
Raises
------
NetworkXError
If one is a MultiGraph and the other one is a graph.
Returns
-------
GH : A new graph with the same type as G.
Notes
-----
Attributes from the graph, nodes, and edges are not copied to the new
graph. If you want a new graph of the intersection of G and H
with the attributes (including edge data) from G use remove_nodes_from()
as follows
>>> G = nx.path_graph(3)
>>> H = nx.path_graph(5)
>>> R = G.copy()
>>> R.remove_nodes_from(n for n in G if n not in H)
>>> R.remove_edges_from(e for e in G.edges if e not in H.edges)
Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
>>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
>>> R = nx.intersection(G, H)
>>> R.nodes
NodeView((0, 1, 2))
>>> R.edges
EdgeView([(1, 2)])
"""
return nx.intersection_all([G, H])
@nx._dispatch(graphs="G,H")
def difference(G, H):
"""Returns a new graph that contains the edges that exist in G but not in H.
The node sets of H and G must be the same.
Parameters
----------
G,H : graph
A NetworkX graph. G and H must have the same node sets.
Returns
-------
D : A new graph with the same type as G.
Notes
-----
Attributes from the graph, nodes, and edges are not copied to the new
graph. If you want a new graph of the difference of G and H with
the attributes (including edge data) from G use remove_nodes_from()
as follows:
>>> G = nx.path_graph(3)
>>> H = nx.path_graph(5)
>>> R = G.copy()
>>> R.remove_nodes_from(n for n in G if n in H)
Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
>>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
>>> R = nx.difference(G, H)
>>> R.nodes
NodeView((0, 1, 2, 3))
>>> R.edges
EdgeView([(0, 2), (1, 3)])
"""
# create new graph
if not G.is_multigraph() == H.is_multigraph():
raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
R = nx.create_empty_copy(G)
if set(G) != set(H):
raise nx.NetworkXError("Node sets of graphs not equal")
if G.is_multigraph():
edges = G.edges(keys=True)
else:
edges = G.edges()
for e in edges:
if not H.has_edge(*e):
R.add_edge(*e)
return R
@nx._dispatch(graphs="G,H")
def symmetric_difference(G, H):
"""Returns new graph with edges that exist in either G or H but not both.
The node sets of H and G must be the same.
Parameters
----------
G,H : graph
A NetworkX graph. G and H must have the same node sets.
Returns
-------
D : A new graph with the same type as G.
Notes
-----
Attributes from the graph, nodes, and edges are not copied to the new
graph.
Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
>>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
>>> R = nx.symmetric_difference(G, H)
>>> R.nodes
NodeView((0, 1, 2, 3))
>>> R.edges
EdgeView([(0, 2), (0, 3), (1, 3)])
"""
# create new graph
if not G.is_multigraph() == H.is_multigraph():
raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
R = nx.create_empty_copy(G)
if set(G) != set(H):
raise nx.NetworkXError("Node sets of graphs not equal")
gnodes = set(G) # set of nodes in G
hnodes = set(H) # set of nodes in H
nodes = gnodes.symmetric_difference(hnodes)
R.add_nodes_from(nodes)
if G.is_multigraph():
edges = G.edges(keys=True)
else:
edges = G.edges()
# we could copy the data here but then this function doesn't
# match intersection and difference
for e in edges:
if not H.has_edge(*e):
R.add_edge(*e)
if H.is_multigraph():
edges = H.edges(keys=True)
else:
edges = H.edges()
for e in edges:
if not G.has_edge(*e):
R.add_edge(*e)
return R
@nx._dispatch(graphs="G,H")
def compose(G, H):
"""Compose graph G with H by combining nodes and edges into a single graph.
The node sets and edges sets do not need to be disjoint.
Composing preserves the attributes of nodes and edges.
Attribute values from H take precedent over attribute values from G.
Parameters
----------
G, H : graph
A NetworkX graph
Returns
-------
C: A new graph with the same type as G
See Also
--------
:func:`~networkx.Graph.update`
union
disjoint_union
Notes
-----
It is recommended that G and H be either both directed or both undirected.
For MultiGraphs, the edges are identified by incident nodes AND edge-key.
This can cause surprises (i.e., edge `(1, 2)` may or may not be the same
in two graphs) if you use MultiGraph without keeping track of edge keys.
If combining the attributes of common nodes is not desired, consider union(),
which raises an exception for name collisions.
Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2)])
>>> H = nx.Graph([(0, 1), (1, 2)])
>>> R = nx.compose(G, H)
>>> R.nodes
NodeView((0, 1, 2))
>>> R.edges
EdgeView([(0, 1), (0, 2), (1, 2)])
By default, the attributes from `H` take precedent over attributes from `G`.
If you prefer another way of combining attributes, you can update them after the compose operation:
>>> G = nx.Graph([(0, 1, {'weight': 2.0}), (3, 0, {'weight': 100.0})])
>>> H = nx.Graph([(0, 1, {'weight': 10.0}), (1, 2, {'weight': -1.0})])
>>> nx.set_node_attributes(G, {0: 'dark', 1: 'light', 3: 'black'}, name='color')
>>> nx.set_node_attributes(H, {0: 'green', 1: 'orange', 2: 'yellow'}, name='color')
>>> GcomposeH = nx.compose(G, H)
Normally, color attribute values of nodes of GcomposeH come from H. We can workaround this as follows:
>>> node_data = {n: G.nodes[n]['color'] + " " + H.nodes[n]['color'] for n in G.nodes & H.nodes}
>>> nx.set_node_attributes(GcomposeH, node_data, 'color')
>>> print(GcomposeH.nodes[0]['color'])
dark green
>>> print(GcomposeH.nodes[3]['color'])
black
Similarly, we can update edge attributes after the compose operation in a way we prefer:
>>> edge_data = {e: G.edges[e]['weight'] * H.edges[e]['weight'] for e in G.edges & H.edges}
>>> nx.set_edge_attributes(GcomposeH, edge_data, 'weight')
>>> print(GcomposeH.edges[(0, 1)]['weight'])
20.0
>>> print(GcomposeH.edges[(3, 0)]['weight'])
100.0
"""
return nx.compose_all([G, H])
@nx._dispatch(graphs="G,H")
def full_join(G, H, rename=(None, None)):
"""Returns the full join of graphs G and H.
Full join is the union of G and H in which all edges between
G and H are added.
The node sets of G and H must be disjoint,
otherwise an exception is raised.
Parameters
----------
G, H : graph
A NetworkX graph
rename : tuple , default=(None, None)
Node names of G and H can be changed by specifying the tuple
rename=('G-','H-') (for example). Node "u" in G is then renamed
"G-u" and "v" in H is renamed "H-v".
Returns
-------
U : The full join graph with the same type as G.
Notes
-----
It is recommended that G and H be either both directed or both undirected.
If G is directed, then edges from G to H are added as well as from H to G.
Note that full_join() does not produce parallel edges for MultiGraphs.
The full join operation of graphs G and H is the same as getting
their complement, performing a disjoint union, and finally getting
the complement of the resulting graph.
Graph, edge, and node attributes are propagated from G and H
to the union graph. If a graph attribute is present in both
G and H the value from H is used.
Examples
--------
>>> G = nx.Graph([(0, 1), (0, 2)])
>>> H = nx.Graph([(3, 4)])
>>> R = nx.full_join(G, H, rename=("G", "H"))
>>> R.nodes
NodeView(('G0', 'G1', 'G2', 'H3', 'H4'))
>>> R.edges
EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G0', 'H3'), ('G0', 'H4'), ('G1', 'H3'), ('G1', 'H4'), ('G2', 'H3'), ('G2', 'H4'), ('H3', 'H4')])
See Also
--------
union
disjoint_union
"""
R = union(G, H, rename)
def add_prefix(graph, prefix):
if prefix is None:
return graph
def label(x):
return f"{prefix}{x}"
return nx.relabel_nodes(graph, label)
G = add_prefix(G, rename[0])
H = add_prefix(H, rename[1])
for i in G:
for j in H:
R.add_edge(i, j)
if R.is_directed():
for i in H:
for j in G:
R.add_edge(i, j)
return R
|