summaryrefslogtreecommitdiff
path: root/networkx/algorithms/shortest_paths/generic.py
blob: ff09fbd0c0da5b67102a917c587b4d96ce15f9a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
"""
Compute the shortest paths and path lengths between nodes in the graph.

These algorithms work with undirected and directed graphs.

"""
import warnings

import networkx as nx

__all__ = [
    "shortest_path",
    "all_shortest_paths",
    "shortest_path_length",
    "average_shortest_path_length",
    "has_path",
]


@nx._dispatch
def has_path(G, source, target):
    """Returns *True* if *G* has a path from *source* to *target*.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    target : node
       Ending node for path
    """
    try:
        nx.shortest_path(G, source, target)
    except nx.NetworkXNoPath:
        return False
    return True


@nx._dispatch
def shortest_path(G, source=None, target=None, weight=None, method="dijkstra"):
    """Compute shortest paths in the graph.

    Parameters
    ----------
    G : NetworkX graph

    source : node, optional
        Starting node for path. If not specified, compute shortest
        paths for each possible starting node.

    target : node, optional
        Ending node for path. If not specified, compute shortest
        paths to all possible nodes.

    weight : None, string or function, optional (default = None)
        If None, every edge has weight/distance/cost 1.
        If a string, use this edge attribute as the edge weight.
        Any edge attribute not present defaults to 1.
        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly
        three positional arguments: the two endpoints of an edge and
        the dictionary of edge attributes for that edge.
        The function must return a number.

    method : string, optional (default = 'dijkstra')
        The algorithm to use to compute the path.
        Supported options: 'dijkstra', 'bellman-ford'.
        Other inputs produce a ValueError.
        If `weight` is None, unweighted graph methods are used, and this
        suggestion is ignored.

    Returns
    -------
    path: list or dictionary
        All returned paths include both the source and target in the path.

        If the source and target are both specified, return a single list
        of nodes in a shortest path from the source to the target.

        If only the source is specified, return a dictionary keyed by
        targets with a list of nodes in a shortest path from the source
        to one of the targets.

        If only the target is specified, return a dictionary keyed by
        sources with a list of nodes in a shortest path from one of the
        sources to the target.

        If neither the source nor target are specified return a dictionary
        of dictionaries with path[source][target]=[list of nodes in path].

    Raises
    ------
    NodeNotFound
        If `source` is not in `G`.

    ValueError
        If `method` is not among the supported options.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> print(nx.shortest_path(G, source=0, target=4))
    [0, 1, 2, 3, 4]
    >>> p = nx.shortest_path(G, source=0)  # target not specified
    >>> p[3] # shortest path from source=0 to target=3
    [0, 1, 2, 3]
    >>> p = nx.shortest_path(G, target=4)  # source not specified
    >>> p[1] # shortest path from source=1 to target=4
    [1, 2, 3, 4]
    >>> p = nx.shortest_path(G)  # source, target not specified
    >>> p[2][4] # shortest path from source=2 to target=4
    [2, 3, 4]

    Notes
    -----
    There may be more than one shortest path between a source and target.
    This returns only one of them.

    See Also
    --------
    all_pairs_shortest_path
    all_pairs_dijkstra_path
    all_pairs_bellman_ford_path
    single_source_shortest_path
    single_source_dijkstra_path
    single_source_bellman_ford_path
    """
    if method not in ("dijkstra", "bellman-ford"):
        # so we don't need to check in each branch later
        raise ValueError(f"method not supported: {method}")
    method = "unweighted" if weight is None else method
    if source is None:
        if target is None:
            msg = "shortest_path for all_pairs will return an iterator in v3.3"
            warnings.warn(msg, DeprecationWarning)

            # Find paths between all pairs.
            if method == "unweighted":
                paths = dict(nx.all_pairs_shortest_path(G))
            elif method == "dijkstra":
                paths = dict(nx.all_pairs_dijkstra_path(G, weight=weight))
            else:  # method == 'bellman-ford':
                paths = dict(nx.all_pairs_bellman_ford_path(G, weight=weight))
        else:
            # Find paths from all nodes co-accessible to the target.
            if G.is_directed():
                G = G.reverse(copy=False)
            if method == "unweighted":
                paths = nx.single_source_shortest_path(G, target)
            elif method == "dijkstra":
                paths = nx.single_source_dijkstra_path(G, target, weight=weight)
            else:  # method == 'bellman-ford':
                paths = nx.single_source_bellman_ford_path(G, target, weight=weight)
            # Now flip the paths so they go from a source to the target.
            for target in paths:
                paths[target] = list(reversed(paths[target]))
    else:
        if target is None:
            # Find paths to all nodes accessible from the source.
            if method == "unweighted":
                paths = nx.single_source_shortest_path(G, source)
            elif method == "dijkstra":
                paths = nx.single_source_dijkstra_path(G, source, weight=weight)
            else:  # method == 'bellman-ford':
                paths = nx.single_source_bellman_ford_path(G, source, weight=weight)
        else:
            # Find shortest source-target path.
            if method == "unweighted":
                paths = nx.bidirectional_shortest_path(G, source, target)
            elif method == "dijkstra":
                _, paths = nx.bidirectional_dijkstra(G, source, target, weight)
            else:  # method == 'bellman-ford':
                paths = nx.bellman_ford_path(G, source, target, weight)
    return paths


@nx._dispatch
def shortest_path_length(G, source=None, target=None, weight=None, method="dijkstra"):
    """Compute shortest path lengths in the graph.

    Parameters
    ----------
    G : NetworkX graph

    source : node, optional
        Starting node for path.
        If not specified, compute shortest path lengths using all nodes as
        source nodes.

    target : node, optional
        Ending node for path.
        If not specified, compute shortest path lengths using all nodes as
        target nodes.

    weight : None, string or function, optional (default = None)
        If None, every edge has weight/distance/cost 1.
        If a string, use this edge attribute as the edge weight.
        Any edge attribute not present defaults to 1.
        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly
        three positional arguments: the two endpoints of an edge and
        the dictionary of edge attributes for that edge.
        The function must return a number.

    method : string, optional (default = 'dijkstra')
        The algorithm to use to compute the path length.
        Supported options: 'dijkstra', 'bellman-ford'.
        Other inputs produce a ValueError.
        If `weight` is None, unweighted graph methods are used, and this
        suggestion is ignored.

    Returns
    -------
    length: int or iterator
        If the source and target are both specified, return the length of
        the shortest path from the source to the target.

        If only the source is specified, return a dict keyed by target
        to the shortest path length from the source to that target.

        If only the target is specified, return a dict keyed by source
        to the shortest path length from that source to the target.

        If neither the source nor target are specified, return an iterator
        over (source, dictionary) where dictionary is keyed by target to
        shortest path length from source to that target.

    Raises
    ------
    NodeNotFound
        If `source` is not in `G`.

    NetworkXNoPath
        If no path exists between source and target.

    ValueError
        If `method` is not among the supported options.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> nx.shortest_path_length(G, source=0, target=4)
    4
    >>> p = nx.shortest_path_length(G, source=0)  # target not specified
    >>> p[4]
    4
    >>> p = nx.shortest_path_length(G, target=4)  # source not specified
    >>> p[0]
    4
    >>> p = dict(nx.shortest_path_length(G))  # source,target not specified
    >>> p[0][4]
    4

    Notes
    -----
    The length of the path is always 1 less than the number of nodes involved
    in the path since the length measures the number of edges followed.

    For digraphs this returns the shortest directed path length. To find path
    lengths in the reverse direction use G.reverse(copy=False) first to flip
    the edge orientation.

    See Also
    --------
    all_pairs_shortest_path_length
    all_pairs_dijkstra_path_length
    all_pairs_bellman_ford_path_length
    single_source_shortest_path_length
    single_source_dijkstra_path_length
    single_source_bellman_ford_path_length
    """
    if method not in ("dijkstra", "bellman-ford"):
        # so we don't need to check in each branch later
        raise ValueError(f"method not supported: {method}")
    method = "unweighted" if weight is None else method
    if source is None:
        if target is None:
            # Find paths between all pairs.
            if method == "unweighted":
                paths = nx.all_pairs_shortest_path_length(G)
            elif method == "dijkstra":
                paths = nx.all_pairs_dijkstra_path_length(G, weight=weight)
            else:  # method == 'bellman-ford':
                paths = nx.all_pairs_bellman_ford_path_length(G, weight=weight)
        else:
            # Find paths from all nodes co-accessible to the target.
            if G.is_directed():
                G = G.reverse(copy=False)
            if method == "unweighted":
                path_length = nx.single_source_shortest_path_length
                paths = path_length(G, target)
            elif method == "dijkstra":
                path_length = nx.single_source_dijkstra_path_length
                paths = path_length(G, target, weight=weight)
            else:  # method == 'bellman-ford':
                path_length = nx.single_source_bellman_ford_path_length
                paths = path_length(G, target, weight=weight)
    else:
        if target is None:
            # Find paths to all nodes accessible from the source.
            if method == "unweighted":
                paths = nx.single_source_shortest_path_length(G, source)
            elif method == "dijkstra":
                path_length = nx.single_source_dijkstra_path_length
                paths = path_length(G, source, weight=weight)
            else:  # method == 'bellman-ford':
                path_length = nx.single_source_bellman_ford_path_length
                paths = path_length(G, source, weight=weight)
        else:
            # Find shortest source-target path.
            if method == "unweighted":
                p = nx.bidirectional_shortest_path(G, source, target)
                paths = len(p) - 1
            elif method == "dijkstra":
                paths = nx.dijkstra_path_length(G, source, target, weight)
            else:  # method == 'bellman-ford':
                paths = nx.bellman_ford_path_length(G, source, target, weight)
    return paths


def average_shortest_path_length(G, weight=None, method=None):
    r"""Returns the average shortest path length.

    The average shortest path length is

    .. math::

       a =\sum_{\substack{s,t \in V \\ s\neq t}} \frac{d(s, t)}{n(n-1)}

    where `V` is the set of nodes in `G`,
    `d(s, t)` is the shortest path from `s` to `t`,
    and `n` is the number of nodes in `G`.

    .. versionchanged:: 3.0
       An exception is raised for directed graphs that are not strongly
       connected.

    Parameters
    ----------
    G : NetworkX graph

    weight : None, string or function, optional (default = None)
        If None, every edge has weight/distance/cost 1.
        If a string, use this edge attribute as the edge weight.
        Any edge attribute not present defaults to 1.
        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly
        three positional arguments: the two endpoints of an edge and
        the dictionary of edge attributes for that edge.
        The function must return a number.

    method : string, optional (default = 'unweighted' or 'djikstra')
        The algorithm to use to compute the path lengths.
        Supported options are 'unweighted', 'dijkstra', 'bellman-ford',
        'floyd-warshall' and 'floyd-warshall-numpy'.
        Other method values produce a ValueError.
        The default method is 'unweighted' if `weight` is None,
        otherwise the default method is 'dijkstra'.

    Raises
    ------
    NetworkXPointlessConcept
        If `G` is the null graph (that is, the graph on zero nodes).

    NetworkXError
        If `G` is not connected (or not strongly connected, in the case
        of a directed graph).

    ValueError
        If `method` is not among the supported options.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> nx.average_shortest_path_length(G)
    2.0

    For disconnected graphs, you can compute the average shortest path
    length for each component

    >>> G = nx.Graph([(1, 2), (3, 4)])
    >>> for C in (G.subgraph(c).copy() for c in nx.connected_components(G)):
    ...     print(nx.average_shortest_path_length(C))
    1.0
    1.0

    """
    single_source_methods = ["unweighted", "dijkstra", "bellman-ford"]
    all_pairs_methods = ["floyd-warshall", "floyd-warshall-numpy"]
    supported_methods = single_source_methods + all_pairs_methods

    if method is None:
        method = "unweighted" if weight is None else "dijkstra"
    if method not in supported_methods:
        raise ValueError(f"method not supported: {method}")

    n = len(G)
    # For the special case of the null graph, raise an exception, since
    # there are no paths in the null graph.
    if n == 0:
        msg = (
            "the null graph has no paths, thus there is no average"
            "shortest path length"
        )
        raise nx.NetworkXPointlessConcept(msg)
    # For the special case of the trivial graph, return zero immediately.
    if n == 1:
        return 0
    # Shortest path length is undefined if the graph is not strongly connected.
    if G.is_directed() and not nx.is_strongly_connected(G):
        raise nx.NetworkXError("Graph is not strongly connected.")
    # Shortest path length is undefined if the graph is not connected.
    if not G.is_directed() and not nx.is_connected(G):
        raise nx.NetworkXError("Graph is not connected.")

    # Compute all-pairs shortest paths.
    def path_length(v):
        if method == "unweighted":
            return nx.single_source_shortest_path_length(G, v)
        elif method == "dijkstra":
            return nx.single_source_dijkstra_path_length(G, v, weight=weight)
        elif method == "bellman-ford":
            return nx.single_source_bellman_ford_path_length(G, v, weight=weight)

    if method in single_source_methods:
        # Sum the distances for each (ordered) pair of source and target node.
        s = sum(l for u in G for l in path_length(u).values())
    else:
        if method == "floyd-warshall":
            all_pairs = nx.floyd_warshall(G, weight=weight)
            s = sum(sum(t.values()) for t in all_pairs.values())
        elif method == "floyd-warshall-numpy":
            s = nx.floyd_warshall_numpy(G, weight=weight).sum()
    return s / (n * (n - 1))


def all_shortest_paths(G, source, target, weight=None, method="dijkstra"):
    """Compute all shortest simple paths in the graph.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path.

    target : node
       Ending node for path.

    weight : None, string or function, optional (default = None)
        If None, every edge has weight/distance/cost 1.
        If a string, use this edge attribute as the edge weight.
        Any edge attribute not present defaults to 1.
        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly
        three positional arguments: the two endpoints of an edge and
        the dictionary of edge attributes for that edge.
        The function must return a number.

    method : string, optional (default = 'dijkstra')
       The algorithm to use to compute the path lengths.
       Supported options: 'dijkstra', 'bellman-ford'.
       Other inputs produce a ValueError.
       If `weight` is None, unweighted graph methods are used, and this
       suggestion is ignored.

    Returns
    -------
    paths : generator of lists
        A generator of all paths between source and target.

    Raises
    ------
    ValueError
        If `method` is not among the supported options.

    NetworkXNoPath
        If `target` cannot be reached from `source`.

    Examples
    --------
    >>> G = nx.Graph()
    >>> nx.add_path(G, [0, 1, 2])
    >>> nx.add_path(G, [0, 10, 2])
    >>> print([p for p in nx.all_shortest_paths(G, source=0, target=2)])
    [[0, 1, 2], [0, 10, 2]]

    Notes
    -----
    There may be many shortest paths between the source and target.  If G
    contains zero-weight cycles, this function will not produce all shortest
    paths because doing so would produce infinitely many paths of unbounded
    length -- instead, we only produce the shortest simple paths.

    See Also
    --------
    shortest_path
    single_source_shortest_path
    all_pairs_shortest_path
    """
    method = "unweighted" if weight is None else method
    if method == "unweighted":
        pred = nx.predecessor(G, source)
    elif method == "dijkstra":
        pred, dist = nx.dijkstra_predecessor_and_distance(G, source, weight=weight)
    elif method == "bellman-ford":
        pred, dist = nx.bellman_ford_predecessor_and_distance(G, source, weight=weight)
    else:
        raise ValueError(f"method not supported: {method}")

    return _build_paths_from_predecessors({source}, target, pred)


def _build_paths_from_predecessors(sources, target, pred):
    """Compute all simple paths to target, given the predecessors found in
    pred, terminating when any source in sources is found.

    Parameters
    ----------
    sources : set
       Starting nodes for path.

    target : node
       Ending node for path.

    pred : dict
       A dictionary of predecessor lists, keyed by node

    Returns
    -------
    paths : generator of lists
        A generator of all paths between source and target.

    Raises
    ------
    NetworkXNoPath
        If `target` cannot be reached from `source`.

    Notes
    -----
    There may be many paths between the sources and target.  If there are
    cycles among the predecessors, this function will not produce all
    possible paths because doing so would produce infinitely many paths
    of unbounded length -- instead, we only produce simple paths.

    See Also
    --------
    shortest_path
    single_source_shortest_path
    all_pairs_shortest_path
    all_shortest_paths
    bellman_ford_path
    """
    if target not in pred:
        raise nx.NetworkXNoPath(f"Target {target} cannot be reached from given sources")

    seen = {target}
    stack = [[target, 0]]
    top = 0
    while top >= 0:
        node, i = stack[top]
        if node in sources:
            yield [p for p, n in reversed(stack[: top + 1])]
        if len(pred[node]) > i:
            stack[top][1] = i + 1
            next = pred[node][i]
            if next in seen:
                continue
            else:
                seen.add(next)
            top += 1
            if top == len(stack):
                stack.append([next, 0])
            else:
                stack[top][:] = [next, 0]
        else:
            seen.discard(node)
            top -= 1