summaryrefslogtreecommitdiff
path: root/networkx/algorithms/shortest_paths/unweighted.py
blob: 7a964f0f2bc4727b68f9c6309be86afccb05fd05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
"""
Shortest path algorithms for unweighted graphs.
"""
import warnings

import networkx as nx

__all__ = [
    "bidirectional_shortest_path",
    "single_source_shortest_path",
    "single_source_shortest_path_length",
    "single_target_shortest_path",
    "single_target_shortest_path_length",
    "all_pairs_shortest_path",
    "all_pairs_shortest_path_length",
    "predecessor",
]


@nx._dispatch
def single_source_shortest_path_length(G, source, cutoff=None):
    """Compute the shortest path lengths from source to all reachable nodes.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dict
        Dict keyed by node to shortest path length to source.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> length = nx.single_source_shortest_path_length(G, 0)
    >>> length[4]
    4
    >>> for node in length:
    ...     print(f"{node}: {length[node]}")
    0: 0
    1: 1
    2: 2
    3: 3
    4: 4

    See Also
    --------
    shortest_path_length
    """
    if source not in G:
        raise nx.NodeNotFound(f"Source {source} is not in G")
    if cutoff is None:
        cutoff = float("inf")
    nextlevel = [source]
    return dict(_single_shortest_path_length(G._adj, nextlevel, cutoff))


def _single_shortest_path_length(adj, firstlevel, cutoff):
    """Yields (node, level) in a breadth first search

    Shortest Path Length helper function
    Parameters
    ----------
        adj : dict
            Adjacency dict or view
        firstlevel : list
            starting nodes, e.g. [source] or [target]
        cutoff : int or float
            level at which we stop the process
    """
    seen = set(firstlevel)
    nextlevel = firstlevel
    level = 0
    n = len(adj)
    for v in nextlevel:
        yield (v, level)
    while nextlevel and cutoff > level:
        level += 1
        thislevel = nextlevel
        nextlevel = []
        for v in thislevel:
            for w in adj[v]:
                if w not in seen:
                    seen.add(w)
                    nextlevel.append(w)
                    yield (w, level)
            if len(seen) == n:
                return


@nx._dispatch
def single_target_shortest_path_length(G, target, cutoff=None):
    """Compute the shortest path lengths to target from all reachable nodes.

    Parameters
    ----------
    G : NetworkX graph

    target : node
       Target node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : iterator
        (source, shortest path length) iterator

    Examples
    --------
    >>> G = nx.path_graph(5, create_using=nx.DiGraph())
    >>> length = dict(nx.single_target_shortest_path_length(G, 4))
    >>> length[0]
    4
    >>> for node in range(5):
    ...     print(f"{node}: {length[node]}")
    0: 4
    1: 3
    2: 2
    3: 1
    4: 0

    See Also
    --------
    single_source_shortest_path_length, shortest_path_length
    """
    if target not in G:
        raise nx.NodeNotFound(f"Target {target} is not in G")

    msg = "single_target_shortest_path_length will return a dict starting in v3.3"
    warnings.warn(msg, DeprecationWarning)

    if cutoff is None:
        cutoff = float("inf")
    # handle either directed or undirected
    adj = G._pred if G.is_directed() else G._adj
    nextlevel = [target]
    # for version 3.3 we will return a dict like this:
    # return dict(_single_shortest_path_length(adj, nextlevel, cutoff))
    return _single_shortest_path_length(adj, nextlevel, cutoff)


@nx._dispatch
def all_pairs_shortest_path_length(G, cutoff=None):
    """Computes the shortest path lengths between all nodes in `G`.

    Parameters
    ----------
    G : NetworkX graph

    cutoff : integer, optional
        Depth at which to stop the search. Only paths of length at most
        `cutoff` are returned.

    Returns
    -------
    lengths : iterator
        (source, dictionary) iterator with dictionary keyed by target and
        shortest path length as the key value.

    Notes
    -----
    The iterator returned only has reachable node pairs.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> length = dict(nx.all_pairs_shortest_path_length(G))
    >>> for node in [0, 1, 2, 3, 4]:
    ...     print(f"1 - {node}: {length[1][node]}")
    1 - 0: 1
    1 - 1: 0
    1 - 2: 1
    1 - 3: 2
    1 - 4: 3
    >>> length[3][2]
    1
    >>> length[2][2]
    0

    """
    length = single_source_shortest_path_length
    # TODO This can be trivially parallelized.
    for n in G:
        yield (n, length(G, n, cutoff=cutoff))


def bidirectional_shortest_path(G, source, target):
    """Returns a list of nodes in a shortest path between source and target.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       starting node for path

    target : node label
       ending node for path

    Returns
    -------
    path: list
       List of nodes in a path from source to target.

    Raises
    ------
    NetworkXNoPath
       If no path exists between source and target.

    Examples
    --------
    >>> G = nx.Graph()
    >>> nx.add_path(G, [0, 1, 2, 3, 0, 4, 5, 6, 7, 4])
    >>> nx.bidirectional_shortest_path(G, 2, 6)
    [2, 1, 0, 4, 5, 6]

    See Also
    --------
    shortest_path

    Notes
    -----
    This algorithm is used by shortest_path(G, source, target).
    """

    if source not in G or target not in G:
        msg = f"Either source {source} or target {target} is not in G"
        raise nx.NodeNotFound(msg)

    # call helper to do the real work
    results = _bidirectional_pred_succ(G, source, target)
    pred, succ, w = results

    # build path from pred+w+succ
    path = []
    # from source to w
    while w is not None:
        path.append(w)
        w = pred[w]
    path.reverse()
    # from w to target
    w = succ[path[-1]]
    while w is not None:
        path.append(w)
        w = succ[w]

    return path


def _bidirectional_pred_succ(G, source, target):
    """Bidirectional shortest path helper.

    Returns (pred, succ, w) where
    pred is a dictionary of predecessors from w to the source, and
    succ is a dictionary of successors from w to the target.
    """
    # does BFS from both source and target and meets in the middle
    if target == source:
        return ({target: None}, {source: None}, source)

    # handle either directed or undirected
    if G.is_directed():
        Gpred = G.pred
        Gsucc = G.succ
    else:
        Gpred = G.adj
        Gsucc = G.adj

    # predecesssor and successors in search
    pred = {source: None}
    succ = {target: None}

    # initialize fringes, start with forward
    forward_fringe = [source]
    reverse_fringe = [target]

    while forward_fringe and reverse_fringe:
        if len(forward_fringe) <= len(reverse_fringe):
            this_level = forward_fringe
            forward_fringe = []
            for v in this_level:
                for w in Gsucc[v]:
                    if w not in pred:
                        forward_fringe.append(w)
                        pred[w] = v
                    if w in succ:  # path found
                        return pred, succ, w
        else:
            this_level = reverse_fringe
            reverse_fringe = []
            for v in this_level:
                for w in Gpred[v]:
                    if w not in succ:
                        succ[w] = v
                        reverse_fringe.append(w)
                    if w in pred:  # found path
                        return pred, succ, w

    raise nx.NetworkXNoPath(f"No path between {source} and {target}.")


@nx._dispatch
def single_source_shortest_path(G, source, cutoff=None):
    """Compute shortest path between source
    and all other nodes reachable from source.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    paths : dictionary
        Dictionary, keyed by target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> path = nx.single_source_shortest_path(G, 0)
    >>> path[4]
    [0, 1, 2, 3, 4]

    Notes
    -----
    The shortest path is not necessarily unique. So there can be multiple
    paths between the source and each target node, all of which have the
    same 'shortest' length. For each target node, this function returns
    only one of those paths.

    See Also
    --------
    shortest_path
    """
    if source not in G:
        raise nx.NodeNotFound(f"Source {source} not in G")

    def join(p1, p2):
        return p1 + p2

    if cutoff is None:
        cutoff = float("inf")
    nextlevel = {source: 1}  # list of nodes to check at next level
    paths = {source: [source]}  # paths dictionary  (paths to key from source)
    return dict(_single_shortest_path(G.adj, nextlevel, paths, cutoff, join))


def _single_shortest_path(adj, firstlevel, paths, cutoff, join):
    """Returns shortest paths

    Shortest Path helper function
    Parameters
    ----------
        adj : dict
            Adjacency dict or view
        firstlevel : dict
            starting nodes, e.g. {source: 1} or {target: 1}
        paths : dict
            paths for starting nodes, e.g. {source: [source]}
        cutoff : int or float
            level at which we stop the process
        join : function
            function to construct a path from two partial paths. Requires two
            list inputs `p1` and `p2`, and returns a list. Usually returns
            `p1 + p2` (forward from source) or `p2 + p1` (backward from target)
    """
    level = 0  # the current level
    nextlevel = firstlevel
    while nextlevel and cutoff > level:
        thislevel = nextlevel
        nextlevel = {}
        for v in thislevel:
            for w in adj[v]:
                if w not in paths:
                    paths[w] = join(paths[v], [w])
                    nextlevel[w] = 1
        level += 1
    return paths


@nx._dispatch
def single_target_shortest_path(G, target, cutoff=None):
    """Compute shortest path to target from all nodes that reach target.

    Parameters
    ----------
    G : NetworkX graph

    target : node label
       Target node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    paths : dictionary
        Dictionary, keyed by target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5, create_using=nx.DiGraph())
    >>> path = nx.single_target_shortest_path(G, 4)
    >>> path[0]
    [0, 1, 2, 3, 4]

    Notes
    -----
    The shortest path is not necessarily unique. So there can be multiple
    paths between the source and each target node, all of which have the
    same 'shortest' length. For each target node, this function returns
    only one of those paths.

    See Also
    --------
    shortest_path, single_source_shortest_path
    """
    if target not in G:
        raise nx.NodeNotFound(f"Target {target} not in G")

    def join(p1, p2):
        return p2 + p1

    # handle undirected graphs
    adj = G.pred if G.is_directed() else G.adj
    if cutoff is None:
        cutoff = float("inf")
    nextlevel = {target: 1}  # list of nodes to check at next level
    paths = {target: [target]}  # paths dictionary  (paths to key from source)
    return dict(_single_shortest_path(adj, nextlevel, paths, cutoff, join))


@nx._dispatch
def all_pairs_shortest_path(G, cutoff=None):
    """Compute shortest paths between all nodes.

    Parameters
    ----------
    G : NetworkX graph

    cutoff : integer, optional
        Depth at which to stop the search. Only paths of length at most
        `cutoff` are returned.

    Returns
    -------
    paths : iterator
        Dictionary, keyed by source and target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> path = dict(nx.all_pairs_shortest_path(G))
    >>> print(path[0][4])
    [0, 1, 2, 3, 4]

    See Also
    --------
    floyd_warshall

    """
    # TODO This can be trivially parallelized.
    for n in G:
        yield (n, single_source_shortest_path(G, n, cutoff=cutoff))


def predecessor(G, source, target=None, cutoff=None, return_seen=None):
    """Returns dict of predecessors for the path from source to all nodes in G.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    target : node label, optional
       Ending node for path. If provided only predecessors between
       source and target are returned

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    return_seen : bool, optional (default=None)
        Whether to return a dictionary, keyed by node, of the level (number of
        hops) to reach the node (as seen during breadth-first-search).

    Returns
    -------
    pred : dictionary
        Dictionary, keyed by node, of predecessors in the shortest path.


    (pred, seen): tuple of dictionaries
        If `return_seen` argument is set to `True`, then a tuple of dictionaries
        is returned. The first element is the dictionary, keyed by node, of
        predecessors in the shortest path. The second element is the dictionary,
        keyed by node, of the level (number of hops) to reach the node (as seen
        during breadth-first-search).

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> list(G)
    [0, 1, 2, 3]
    >>> nx.predecessor(G, 0)
    {0: [], 1: [0], 2: [1], 3: [2]}
    >>> nx.predecessor(G, 0, return_seen=True)
    ({0: [], 1: [0], 2: [1], 3: [2]}, {0: 0, 1: 1, 2: 2, 3: 3})


    """
    if source not in G:
        raise nx.NodeNotFound(f"Source {source} not in G")

    level = 0  # the current level
    nextlevel = [source]  # list of nodes to check at next level
    seen = {source: level}  # level (number of hops) when seen in BFS
    pred = {source: []}  # predecessor dictionary
    while nextlevel:
        level = level + 1
        thislevel = nextlevel
        nextlevel = []
        for v in thislevel:
            for w in G[v]:
                if w not in seen:
                    pred[w] = [v]
                    seen[w] = level
                    nextlevel.append(w)
                elif seen[w] == level:  # add v to predecessor list if it
                    pred[w].append(v)  # is at the correct level
        if cutoff and cutoff <= level:
            break

    if target is not None:
        if return_seen:
            if target not in pred:
                return ([], -1)  # No predecessor
            return (pred[target], seen[target])
        else:
            if target not in pred:
                return []  # No predecessor
            return pred[target]
    else:
        if return_seen:
            return (pred, seen)
        else:
            return pred