summaryrefslogtreecommitdiff
path: root/networkx/algorithms/tests/test_d_separation.py
blob: 74c16ae28b4ce13bcff2df7357dea06d4c8bc556 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from itertools import combinations

import pytest

import networkx as nx


def path_graph():
    """Return a path graph of length three."""
    G = nx.path_graph(3, create_using=nx.DiGraph)
    G.graph["name"] = "path"
    nx.freeze(G)
    return G


def fork_graph():
    """Return a three node fork graph."""
    G = nx.DiGraph(name="fork")
    G.add_edges_from([(0, 1), (0, 2)])
    nx.freeze(G)
    return G


def collider_graph():
    """Return a collider/v-structure graph with three nodes."""
    G = nx.DiGraph(name="collider")
    G.add_edges_from([(0, 2), (1, 2)])
    nx.freeze(G)
    return G


def naive_bayes_graph():
    """Return a simply Naive Bayes PGM graph."""
    G = nx.DiGraph(name="naive_bayes")
    G.add_edges_from([(0, 1), (0, 2), (0, 3), (0, 4)])
    nx.freeze(G)
    return G


def asia_graph():
    """Return the 'Asia' PGM graph."""
    G = nx.DiGraph(name="asia")
    G.add_edges_from(
        [
            ("asia", "tuberculosis"),
            ("smoking", "cancer"),
            ("smoking", "bronchitis"),
            ("tuberculosis", "either"),
            ("cancer", "either"),
            ("either", "xray"),
            ("either", "dyspnea"),
            ("bronchitis", "dyspnea"),
        ]
    )
    nx.freeze(G)
    return G


@pytest.fixture(name="path_graph")
def path_graph_fixture():
    return path_graph()


@pytest.fixture(name="fork_graph")
def fork_graph_fixture():
    return fork_graph()


@pytest.fixture(name="collider_graph")
def collider_graph_fixture():
    return collider_graph()


@pytest.fixture(name="naive_bayes_graph")
def naive_bayes_graph_fixture():
    return naive_bayes_graph()


@pytest.fixture(name="asia_graph")
def asia_graph_fixture():
    return asia_graph()


@pytest.mark.parametrize(
    "graph",
    [path_graph(), fork_graph(), collider_graph(), naive_bayes_graph(), asia_graph()],
)
def test_markov_condition(graph):
    """Test that the Markov condition holds for each PGM graph."""
    for node in graph.nodes:
        parents = set(graph.predecessors(node))
        non_descendants = graph.nodes - nx.descendants(graph, node) - {node} - parents
        assert nx.d_separated(graph, {node}, non_descendants, parents)


def test_path_graph_dsep(path_graph):
    """Example-based test of d-separation for path_graph."""
    assert nx.d_separated(path_graph, {0}, {2}, {1})
    assert not nx.d_separated(path_graph, {0}, {2}, {})


def test_fork_graph_dsep(fork_graph):
    """Example-based test of d-separation for fork_graph."""
    assert nx.d_separated(fork_graph, {1}, {2}, {0})
    assert not nx.d_separated(fork_graph, {1}, {2}, {})


def test_collider_graph_dsep(collider_graph):
    """Example-based test of d-separation for collider_graph."""
    assert nx.d_separated(collider_graph, {0}, {1}, {})
    assert not nx.d_separated(collider_graph, {0}, {1}, {2})


def test_naive_bayes_dsep(naive_bayes_graph):
    """Example-based test of d-separation for naive_bayes_graph."""
    for u, v in combinations(range(1, 5), 2):
        assert nx.d_separated(naive_bayes_graph, {u}, {v}, {0})
        assert not nx.d_separated(naive_bayes_graph, {u}, {v}, {})


def test_asia_graph_dsep(asia_graph):
    """Example-based test of d-separation for asia_graph."""
    assert nx.d_separated(
        asia_graph, {"asia", "smoking"}, {"dyspnea", "xray"}, {"bronchitis", "either"}
    )
    assert nx.d_separated(
        asia_graph, {"tuberculosis", "cancer"}, {"bronchitis"}, {"smoking", "xray"}
    )


def test_undirected_graphs_are_not_supported():
    """
    Test that undirected graphs are not supported.

    d-separation and its related algorithms do not apply in
    the case of undirected graphs.
    """
    g = nx.path_graph(3, nx.Graph)
    with pytest.raises(nx.NetworkXNotImplemented):
        nx.d_separated(g, {0}, {1}, {2})
    with pytest.raises(nx.NetworkXNotImplemented):
        nx.is_minimal_d_separator(g, {0}, {1}, {2})
    with pytest.raises(nx.NetworkXNotImplemented):
        nx.minimal_d_separator(g, {0}, {1})


def test_cyclic_graphs_raise_error():
    """
    Test that cycle graphs should cause erroring.

    This is because PGMs assume a directed acyclic graph.
    """
    g = nx.cycle_graph(3, nx.DiGraph)
    with pytest.raises(nx.NetworkXError):
        nx.d_separated(g, {0}, {1}, {2})
    with pytest.raises(nx.NetworkXError):
        nx.minimal_d_separator(g, {0}, {1})
    with pytest.raises(nx.NetworkXError):
        nx.is_minimal_d_separator(g, {0}, {1}, {2})


def test_invalid_nodes_raise_error(asia_graph):
    """
    Test that graphs that have invalid nodes passed in raise errors.
    """
    with pytest.raises(nx.NodeNotFound):
        nx.d_separated(asia_graph, {0}, {1}, {2})
    with pytest.raises(nx.NodeNotFound):
        nx.is_minimal_d_separator(asia_graph, 0, 1, {2})
    with pytest.raises(nx.NodeNotFound):
        nx.minimal_d_separator(asia_graph, 0, 1)


def test_minimal_d_separator():
    # Case 1:
    # create a graph A -> B <- C
    # B -> D -> E;
    # B -> F;
    # G -> E;
    edge_list = [("A", "B"), ("C", "B"), ("B", "D"), ("D", "E"), ("B", "F"), ("G", "E")]
    G = nx.DiGraph(edge_list)
    assert not nx.d_separated(G, {"B"}, {"E"}, set())

    # minimal set of the corresponding graph
    # for B and E should be (D,)
    Zmin = nx.minimal_d_separator(G, "B", "E")

    # the minimal separating set should pass the test for minimality
    assert nx.is_minimal_d_separator(G, "B", "E", Zmin)
    assert Zmin == {"D"}

    # Case 2:
    # create a graph A -> B -> C
    # B -> D -> C;
    edge_list = [("A", "B"), ("B", "C"), ("B", "D"), ("D", "C")]
    G = nx.DiGraph(edge_list)
    assert not nx.d_separated(G, {"A"}, {"C"}, set())
    Zmin = nx.minimal_d_separator(G, "A", "C")

    # the minimal separating set should pass the test for minimality
    assert nx.is_minimal_d_separator(G, "A", "C", Zmin)
    assert Zmin == {"B"}