1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
import pytest
import networkx as nx
from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE
class TestEdgeBFS:
@classmethod
def setup_class(cls):
cls.nodes = [0, 1, 2, 3]
cls.edges = [(0, 1), (1, 0), (1, 0), (2, 0), (2, 1), (3, 1)]
def test_empty(self):
G = nx.Graph()
edges = list(nx.edge_bfs(G))
assert edges == []
def test_graph_single_source(self):
G = nx.Graph(self.edges)
G.add_edge(4, 5)
x = list(nx.edge_bfs(G, [0]))
x_ = [(0, 1), (0, 2), (1, 2), (1, 3)]
assert x == x_
def test_graph(self):
G = nx.Graph(self.edges)
x = list(nx.edge_bfs(G, self.nodes))
x_ = [(0, 1), (0, 2), (1, 2), (1, 3)]
assert x == x_
def test_digraph(self):
G = nx.DiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes))
x_ = [(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)]
assert x == x_
def test_digraph_orientation_invalid(self):
G = nx.DiGraph(self.edges)
edge_iterator = nx.edge_bfs(G, self.nodes, orientation="hello")
pytest.raises(nx.NetworkXError, list, edge_iterator)
def test_digraph_orientation_none(self):
G = nx.DiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes, orientation=None))
x_ = [(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)]
assert x == x_
def test_digraph_orientation_original(self):
G = nx.DiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes, orientation="original"))
x_ = [
(0, 1, FORWARD),
(1, 0, FORWARD),
(2, 0, FORWARD),
(2, 1, FORWARD),
(3, 1, FORWARD),
]
assert x == x_
def test_digraph2(self):
G = nx.DiGraph()
nx.add_path(G, range(4))
x = list(nx.edge_bfs(G, [0]))
x_ = [(0, 1), (1, 2), (2, 3)]
assert x == x_
def test_digraph_rev(self):
G = nx.DiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes, orientation="reverse"))
x_ = [
(1, 0, REVERSE),
(2, 0, REVERSE),
(0, 1, REVERSE),
(2, 1, REVERSE),
(3, 1, REVERSE),
]
assert x == x_
def test_digraph_rev2(self):
G = nx.DiGraph()
nx.add_path(G, range(4))
x = list(nx.edge_bfs(G, [3], orientation="reverse"))
x_ = [(2, 3, REVERSE), (1, 2, REVERSE), (0, 1, REVERSE)]
assert x == x_
def test_multigraph(self):
G = nx.MultiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes))
x_ = [(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 2, 0), (1, 3, 0)]
# This is an example of where hash randomization can break.
# There are 3! * 2 alternative outputs, such as:
# [(0, 1, 1), (1, 0, 0), (0, 1, 2), (1, 3, 0), (1, 2, 0)]
# But note, the edges (1,2,0) and (1,3,0) always follow the (0,1,k)
# edges. So the algorithm only guarantees a partial order. A total
# order is guaranteed only if the graph data structures are ordered.
assert x == x_
def test_multidigraph(self):
G = nx.MultiDiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes))
x_ = [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 1, 0), (3, 1, 0)]
assert x == x_
def test_multidigraph_rev(self):
G = nx.MultiDiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes, orientation="reverse"))
x_ = [
(1, 0, 0, REVERSE),
(1, 0, 1, REVERSE),
(2, 0, 0, REVERSE),
(0, 1, 0, REVERSE),
(2, 1, 0, REVERSE),
(3, 1, 0, REVERSE),
]
assert x == x_
def test_digraph_ignore(self):
G = nx.DiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes, orientation="ignore"))
x_ = [
(0, 1, FORWARD),
(1, 0, REVERSE),
(2, 0, REVERSE),
(2, 1, REVERSE),
(3, 1, REVERSE),
]
assert x == x_
def test_digraph_ignore2(self):
G = nx.DiGraph()
nx.add_path(G, range(4))
x = list(nx.edge_bfs(G, [0], orientation="ignore"))
x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 3, FORWARD)]
assert x == x_
def test_multidigraph_ignore(self):
G = nx.MultiDiGraph(self.edges)
x = list(nx.edge_bfs(G, self.nodes, orientation="ignore"))
x_ = [
(0, 1, 0, FORWARD),
(1, 0, 0, REVERSE),
(1, 0, 1, REVERSE),
(2, 0, 0, REVERSE),
(2, 1, 0, REVERSE),
(3, 1, 0, REVERSE),
]
assert x == x_
|