diff options
author | Alan McIntyre <alan.mcintyre@local> | 2008-07-05 14:26:16 +0000 |
---|---|---|
committer | Alan McIntyre <alan.mcintyre@local> | 2008-07-05 14:26:16 +0000 |
commit | 36e02207c1a82fe669531dd24ec799eca2989c80 (patch) | |
tree | 104f800d6800c4a01a0aecac323a8a70517aa94b | |
parent | f07e385b69ee59ef6abe05f164138dc6a7279291 (diff) | |
download | numpy-36e02207c1a82fe669531dd24ec799eca2989c80.tar.gz |
Use the implicit "import numpy as np" made available to all doctests instead
of explicit imports or dependency on the local scope where the doctest is
defined..
-rw-r--r-- | numpy/add_newdocs.py | 76 | ||||
-rw-r--r-- | numpy/lib/financial.py | 8 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 33 | ||||
-rw-r--r-- | numpy/lib/io.py | 6 | ||||
-rw-r--r-- | numpy/lib/polynomial.py | 4 | ||||
-rw-r--r-- | numpy/lib/scimath.py | 63 | ||||
-rw-r--r-- | numpy/lib/shape_base.py | 70 | ||||
-rw-r--r-- | numpy/lib/twodim_base.py | 8 | ||||
-rw-r--r-- | numpy/linalg/linalg.py | 75 | ||||
-rw-r--r-- | numpy/ma/core.py | 20 | ||||
-rw-r--r-- | numpy/ma/extras.py | 2 | ||||
-rw-r--r-- | numpy/testing/decorators.py | 1 |
12 files changed, 178 insertions, 188 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index c44ba9094..eb1083df7 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -19,46 +19,46 @@ Examples -------- Using array-scalar type: ->>> dtype(int16) +>>> np.dtype(np.int16) dtype('int16') Record, one field name 'f1', containing int16: ->>> dtype([('f1', int16)]) +>>> np.dtype([('f1', np.int16)]) dtype([('f1', '<i2')]) Record, one field named 'f1', in itself containing a record with one field: ->>> dtype([('f1', [('f1', int16)])]) +>>> np.dtype([('f1', [('f1', np.int16)])]) dtype([('f1', [('f1', '<i2')])]) Record, two fields: the first field contains an unsigned int, the second an int32: ->>> dtype([('f1', uint), ('f2', int32)]) +>>> np.dtype([('f1', np.uint), ('f2', np.int32)]) dtype([('f1', '<u4'), ('f2', '<i4')]) Using array-protocol type strings: ->>> dtype([('a','f8'),('b','S10')]) +>>> np.dtype([('a','f8'),('b','S10')]) dtype([('a', '<f8'), ('b', '|S10')]) Using comma-separated field formats. The shape is (2,3): ->>> dtype("i4, (2,3)f8") +>>> np.dtype("i4, (2,3)f8") dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` is a flexible type, here of size 10: ->>> dtype([('hello',(int,3)),('world',void,10)]) +>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)]) dtype([('hello', '<i4', 3), ('world', '|V10')]) Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are the offsets in bytes: ->>> dtype((int16, {'x':(int8,0), 'y':(int8,1)})) +>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) Using dictionaries. Two fields named 'gender' and 'age': ->>> dtype({'names':['gender','age'], 'formats':['S1',uint8]}) +>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) dtype([('gender', '|S1'), ('age', '|u1')]) Offsets in bytes, here 0 and 25: ->>> dtype({'surname':('S25',0),'age':(uint8,25)}) +>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) dtype([('surname', '|S25'), ('age', '|u1')]) """) @@ -386,7 +386,7 @@ add_newdoc('numpy.core.multiarray','concatenate', Examples -------- - >>> concatenate( ([0,1,2], [5,6,7]) ) + >>> np.concatenate( ([0,1,2], [5,6,7]) ) array([0, 1, 2, 5, 6, 7]) """) @@ -480,7 +480,7 @@ add_newdoc('numpy.core.multiarray','where', Examples -------- - >>> where([True,False,True],[1,2,3],[4,5,6]) + >>> np.where([True,False,True],[1,2,3],[4,5,6]) array([1, 5, 3]) """) @@ -520,12 +520,12 @@ add_newdoc('numpy.core.multiarray','lexsort', -------- >>> a = [1,5,1,4,3,6,7] >>> b = [9,4,0,4,0,4,3] - >>> ind = lexsort((b,a)) + >>> ind = np.lexsort((b,a)) >>> print ind [2 0 4 3 1 5 6] - >>> print take(a,ind) + >>> print np.take(a,ind) [1 1 3 4 5 6 7] - >>> print take(b,ind) + >>> print np.take(b,ind) [0 9 0 4 4 4 3] """) @@ -858,7 +858,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', Examples -------- - >>> a = arange(6).reshape(2,3) + >>> a = np.arange(6).reshape(2,3) >>> a.argmax() 5 >>> a.argmax(0) @@ -889,7 +889,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', Examples -------- - >>> a = arange(6).reshape(2,3) + >>> a = np.arange(6).reshape(2,3) >>> a.argmin() 0 >>> a.argmin(0) @@ -1008,10 +1008,10 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', -------- >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], ... [20, 21, 22, 23], [30, 31, 32, 33]] - >>> a = array([2, 3, 1, 0], dtype=int) + >>> a = np.array([2, 3, 1, 0], dtype=int) >>> a.choose(choices) array([20, 31, 12, 3]) - >>> a = array([2, 4, 1, 0], dtype=int) + >>> a = np.array([2, 4, 1, 0], dtype=int) >>> a.choose(choices, mode='clip') array([20, 31, 12, 3]) >>> a.choose(choices, mode='wrap') @@ -1226,7 +1226,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', Examples -------- - >>> a = arange(4).reshape(2,2) + >>> a = np.arange(4).reshape(2,2) >>> a array([[0, 1], [2, 3]]) @@ -1235,7 +1235,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', >>> a.diagonal(1) array([1]) - >>> a = arange(8).reshape(2,2,2) + >>> a = np.arange(8).reshape(2,2,2) >>> a array([[[0, 1], [2, 3]], @@ -1462,13 +1462,13 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', Examples -------- - >>> prod([1.,2.]) + >>> np.prod([1.,2.]) 2.0 - >>> prod([1.,2.], dtype=int32) + >>> np.prod([1.,2.], dtype=np.int32) 2 - >>> prod([[1.,2.],[3.,4.]]) + >>> np.prod([[1.,2.],[3.,4.]]) 24.0 - >>> prod([[1.,2.],[3.,4.]], axis=1) + >>> np.prod([[1.,2.],[3.,4.]], axis=1) array([ 2., 12.]) Notes @@ -1599,7 +1599,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', Examples -------- - >>> x = array([[1,2,3],[4,5,6]]) + >>> x = np.array([[1,2,3],[4,5,6]]) >>> x array([[1, 2, 3], [4, 5, 6]]) @@ -1637,7 +1637,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', Examples -------- - >>> x = array([[1,2],[3,4]]) + >>> x = np.array([[1,2],[3,4]]) >>> x.repeat(2) array([1, 1, 2, 2, 3, 3, 4, 4]) >>> x.repeat(3, axis=1) @@ -1725,10 +1725,10 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('round', Examples -------- - >>> x = array([.5, 1.5, 2.5, 3.5, 4.5]) + >>> x = np.array([.5, 1.5, 2.5, 3.5, 4.5]) >>> x.round() array([ 0., 2., 2., 4., 4.]) - >>> x = array([1,2,3,11]) + >>> x = np.array([1,2,3,11]) >>> x.round(decimals=1) array([ 1, 2, 3, 11]) >>> x.round(decimals=-1) @@ -1840,7 +1840,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', Examples -------- - >>> x = array([[[1,1,1],[2,2,2],[3,3,3]]]) + >>> x = np.array([[[1,1,1],[2,2,2],[3,3,3]]]) >>> x.shape (1, 3, 3) >>> x.squeeze().shape @@ -1929,15 +1929,15 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', Examples -------- - >>> array([0.5, 1.5]).sum() + >>> np.array([0.5, 1.5]).sum() 2.0 - >>> array([0.5, 1.5]).sum(dtype=int32) + >>> np.array([0.5, 1.5]).sum(dtype=np.int32) 1 - >>> array([[0, 1], [0, 5]]).sum(axis=0) + >>> np.array([[0, 1], [0, 5]]).sum(axis=0) array([0, 6]) - >>> array([[0, 1], [0, 5]]).sum(axis=1) + >>> np.array([[0, 1], [0, 5]]).sum(axis=1) array([1, 5]) - >>> ones(128, dtype=int8).sum(dtype=int8) # overflow! + >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) # overflow! -128 Notes @@ -2120,9 +2120,9 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', Examples -------- - >>> eye(3).trace() + >>> np.eye(3).trace() 3.0 - >>> a = arange(8).reshape((2,2,2)) + >>> a = np.arange(8).reshape((2,2,2)) >>> a.trace() array([6, 8]) @@ -2139,7 +2139,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', Examples -------- - >>> a = array([[1,2],[3,4]]) + >>> a = np.array([[1,2],[3,4]]) >>> a array([[1, 2], [3, 4]]) diff --git a/numpy/lib/financial.py b/numpy/lib/financial.py index a3552ebc0..9c5d2753a 100644 --- a/numpy/lib/financial.py +++ b/numpy/lib/financial.py @@ -69,7 +69,7 @@ What is the future value after 10 years of saving $100 now, with an additional monthly savings of $100. Assume the interest rate is 5% (annually) compounded monthly? ->>> fv(0.05/12, 10*12, -100, -100) +>>> np.fv(0.05/12, 10*12, -100, -100) 15692.928894335748 By convention, the negative sign represents cash flow out (i.e. money not @@ -94,7 +94,7 @@ Examples What would the monthly payment need to be to pay off a $200,000 loan in 15 years at an annual interest rate of 7.5%? ->>> pmt(0.075/12, 12*15, 200000) +>>> np.pmt(0.075/12, 12*15, 200000) -1854.0247200054619 In order to pay-off (i.e. have a future-value of 0) the $200,000 obtained @@ -122,7 +122,7 @@ Examples If you only had $150 to spend as payment, how long would it take to pay-off a loan of $8,000 at 7% annual interest? ->>> nper(0.07/12, -150, 8000) +>>> np.nper(0.07/12, -150, 8000) 64.073348770661852 So, over 64 months would be required to pay off the loan. @@ -130,7 +130,7 @@ So, over 64 months would be required to pay off the loan. The same analysis could be done with several different interest rates and/or payments and/or total amounts to produce an entire table. ->>> nper(*(ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000])) +>>> np.nper(*(np.ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000])) array([[[ 32.58497782, 38.57048452], [ 71.51317802, 86.37179563]], diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index fe6e67903..e8df0b439 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -471,7 +471,7 @@ def average(a, axis=None, weights=None, returned=False): Examples -------- - >>> average(range(1,11), weights=range(10,0,-1)) + >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 Raises @@ -893,7 +893,7 @@ def trim_zeros(filt, trim='fb'): Examples -------- - >>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0)) + >>> a = np.array((0, 0, 0, 1, 2, 3, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 2, 1]) @@ -1069,7 +1069,7 @@ class vectorize(object): ... else: ... return a+b - >>> vfunc = vectorize(myfunc) + >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) @@ -1486,29 +1486,28 @@ def median(a, axis=0, out=None, overwrite_input=False): Examples -------- - >>> from numpy import median >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) - >>> median(a) + >>> np.median(a) array([ 6.5, 4.5, 2.5]) - >>> median(a, axis=None) + >>> np.median(a, axis=None) 3.5 - >>> median(a, axis=1) + >>> np.median(a, axis=1) array([ 7., 2.]) - >>> m = median(a) + >>> m = np.median(a) >>> out = np.zeros_like(m) - >>> median(a, out=m) + >>> np.median(a, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() - >>> median(b, axis=1, overwrite_input=True) + >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() - >>> median(b, axis=None, overwrite_input=True) + >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ @@ -1632,11 +1631,11 @@ def delete(arr, obj, axis=None): ... [1,2,3], ... [6,7,8]] - >>> delete(arr, 1, 1) + >>> np.delete(arr, 1, 1) array([[3, 5], [1, 3], [6, 8]]) - >>> delete(arr, 1, 0) + >>> np.delete(arr, 1, 0) array([[3, 4, 5], [6, 7, 8]]) """ @@ -1732,11 +1731,11 @@ def insert(arr, obj, values, axis=None): Examples -------- - >>> a = array([[1,2,3], - ... [4,5,6], - ... [7,8,9]]) + >>> a = np.array([[1,2,3], + ... [4,5,6], + ... [7,8,9]]) - >>> insert(a, [1,2], [[4],[5]], axis=0) + >>> np.insert(a, [1,2], [[4],[5]], axis=0) array([[1, 2, 3], [4, 4, 4], [4, 5, 6], diff --git a/numpy/lib/io.py b/numpy/lib/io.py index db4e73358..36723f1d8 100644 --- a/numpy/lib/io.py +++ b/numpy/lib/io.py @@ -344,9 +344,9 @@ def savetxt(fname, X, fmt='%.18e',delimiter=' '): Examples -------- - >>> savetxt('test.out', x, delimiter=',') # X is an array - >>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays - >>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation + >>> np.savetxt('test.out', x, delimiter=',') # X is an array + >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays + >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation Notes on fmt ------------ diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py index 303cdb13c..8fb0337dc 100644 --- a/numpy/lib/polynomial.py +++ b/numpy/lib/polynomial.py @@ -52,8 +52,8 @@ def poly(seq_of_zeros): Example: - >>> b = roots([1,3,1,5,6]) - >>> poly(b) + >>> b = np.roots([1,3,1,5,6]) + >>> np.poly(b) array([ 1., 3., 1., 5., 6.]) """ diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py index d3965668d..2a951135a 100644 --- a/numpy/lib/scimath.py +++ b/numpy/lib/scimath.py @@ -50,8 +50,8 @@ def _tocomplex(arr): >>> a = np.array([1,2,3],np.short) - >>> ac = _tocomplex(a); ac - array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + >>> ac = np.lib.scimath._tocomplex(a); ac + array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=np.complex64) >>> ac.dtype dtype('complex64') @@ -61,7 +61,7 @@ def _tocomplex(arr): >>> b = np.array([1,2,3],np.double) - >>> bc = _tocomplex(b); bc + >>> bc = np.lib.scimath._tocomplex(b); bc array([ 1.+0.j, 2.+0.j, 3.+0.j]) >>> bc.dtype @@ -72,7 +72,7 @@ def _tocomplex(arr): >>> c = np.array([1,2,3],np.csingle) - >>> cc = _tocomplex(c); cc + >>> cc = np.lib.scimath._tocomplex(c); cc array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> c *= 2; c @@ -102,10 +102,10 @@ def _fix_real_lt_zero(x): Examples -------- - >>> _fix_real_lt_zero([1,2]) + >>> np.lib.scimath._fix_real_lt_zero([1,2]) array([1, 2]) - >>> _fix_real_lt_zero([-1,2]) + >>> np.lib.scimath._fix_real_lt_zero([-1,2]) array([-1.+0.j, 2.+0.j]) """ x = asarray(x) @@ -128,10 +128,10 @@ def _fix_int_lt_zero(x): Examples -------- - >>> _fix_int_lt_zero([1,2]) + >>> np.lib.scimath._fix_int_lt_zero([1,2]) array([1, 2]) - >>> _fix_int_lt_zero([-1,2]) + >>> np.lib.scimath._fix_int_lt_zero([-1,2]) array([-1., 2.]) """ x = asarray(x) @@ -154,10 +154,10 @@ def _fix_real_abs_gt_1(x): Examples -------- - >>> _fix_real_abs_gt_1([0,1]) + >>> np.lib.scimath._fix_real_abs_gt_1([0,1]) array([0, 1]) - >>> _fix_real_abs_gt_1([0,2]) + >>> np.lib.scimath._fix_real_abs_gt_1([0,2]) array([ 0.+0.j, 2.+0.j]) """ x = asarray(x) @@ -180,17 +180,17 @@ def sqrt(x): -------- For real, non-negative inputs this works just like numpy.sqrt(): - >>> sqrt(1) + >>> np.lib.scimath.sqrt(1) 1.0 - >>> sqrt([1,4]) + >>> np.lib.scimath.sqrt([1,4]) array([ 1., 2.]) But it automatically handles negative inputs: - >>> sqrt(-1) + >>> np.lib.scimath.sqrt(-1) (0.0+1.0j) - >>> sqrt([-1,4]) + >>> np.lib.scimath.sqrt([-1,4]) array([ 0.+1.j, 2.+0.j]) """ x = _fix_real_lt_zero(x) @@ -213,14 +213,13 @@ def log(x): Examples -------- >>> import math - - >>> log(math.exp(1)) + >>> np.lib.scimath.log(math.exp(1)) 1.0 Negative arguments are correctly handled (recall that for negative arguments, the identity exp(log(z))==z does not hold anymore): - >>> log(-math.exp(1)) == (1+1j*math.pi) + >>> np.lib.scimath.log(-math.exp(1)) == (1+1j*math.pi) True """ x = _fix_real_lt_zero(x) @@ -246,11 +245,11 @@ def log10(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> log10([10**1,10**2]) + >>> np.lib.scimath.log10([10**1,10**2]) array([ 1., 2.]) - >>> log10([-10**1,-10**2,10**2]) + >>> np.lib.scimath.log10([-10**1,-10**2,10**2]) array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ]) """ x = _fix_real_lt_zero(x) @@ -276,10 +275,10 @@ def logn(n, x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> logn(2,[4,8]) + >>> np.lib.scimath.logn(2,[4,8]) array([ 2., 3.]) - >>> logn(2,[-4,-8,8]) + >>> np.lib.scimath.logn(2,[-4,-8,8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) @@ -306,10 +305,10 @@ def log2(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> log2([4,8]) + >>> np.lib.scimath.log2([4,8]) array([ 2., 3.]) - >>> log2([-4,-8,8]) + >>> np.lib.scimath.log2([-4,-8,8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) @@ -336,13 +335,13 @@ def power(x, p): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> power([2,4],2) + >>> np.lib.scimath.power([2,4],2) array([ 4, 16]) - >>> power([2,4],-2) + >>> np.lib.scimath.power([2,4],-2) array([ 0.25 , 0.0625]) - >>> power([-2,4],2) + >>> np.lib.scimath.power([-2,4],2) array([ 4.+0.j, 16.+0.j]) """ x = _fix_real_lt_zero(x) @@ -368,10 +367,10 @@ def arccos(x): -------- >>> np.set_printoptions(precision=4) - >>> arccos(1) + >>> np.lib.scimath.arccos(1) 0.0 - >>> arccos([1,2]) + >>> np.lib.scimath.arccos([1,2]) array([ 0.-0.j , 0.+1.317j]) """ x = _fix_real_abs_gt_1(x) @@ -397,10 +396,10 @@ def arcsin(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> arcsin(0) + >>> np.lib.scimath.arcsin(0) 0.0 - >>> arcsin([0,1]) + >>> np.lib.scimath.arcsin([0,1]) array([ 0. , 1.5708]) """ x = _fix_real_abs_gt_1(x) @@ -426,10 +425,10 @@ def arctanh(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> arctanh(0) + >>> np.lib.scimath.arctanh(0) 0.0 - >>> arctanh([0,2]) + >>> np.lib.scimath.arctanh([0,2]) array([ 0.0000+0.j , 0.5493-1.5708j]) """ x = _fix_real_abs_gt_1(x) diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py index 77f158eb3..afdb879e4 100644 --- a/numpy/lib/shape_base.py +++ b/numpy/lib/shape_base.py @@ -192,13 +192,13 @@ def vstack(tup): tup -- sequence of arrays. All arrays must have the same shape. Examples: - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]]) - >>> a = array([[1],[2],[3]]) - >>> b = array([[2],[3],[4]]) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) >>> np.vstack((a,b)) array([[1], [2], @@ -222,14 +222,13 @@ def hstack(tup): tup -- sequence of arrays. All arrays must have the same shape. Examples: - >>> import numpy - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) - >>> numpy.hstack((a,b)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.hstack((a,b)) array([1, 2, 3, 2, 3, 4]) - >>> a = array([[1],[2],[3]]) - >>> b = array([[2],[3],[4]]) - >>> numpy.hstack((a,b)) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) + >>> np.hstack((a,b)) array([[1, 2], [2, 3], [3, 4]]) @@ -253,10 +252,9 @@ def column_stack(tup): tup -- sequence of 1D or 2D arrays. All arrays must have the same first dimension. Examples: - >>> import numpy - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) - >>> numpy.column_stack((a,b)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.column_stack((a,b)) array([[1, 2], [2, 3], [3, 4]]) @@ -283,16 +281,15 @@ def dstack(tup): tup -- sequence of arrays. All arrays must have the same shape. Examples: - >>> import numpy - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) - >>> numpy.dstack((a,b)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.dstack((a,b)) array([[[1, 2], [2, 3], [3, 4]]]) - >>> a = array([[1],[2],[3]]) - >>> b = array([[2],[3],[4]]) - >>> numpy.dstack((a,b)) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) + >>> np.dstack((a,b)) array([[[1, 2]], <BLANKLINE> [[2, 3]], @@ -432,12 +429,11 @@ def hsplit(ary,indices_or_sections): Related: hstack, split, array_split, vsplit, dsplit. Examples: - >>> import numpy - >>> a= array((1,2,3,4)) - >>> numpy.hsplit(a,2) + >>> a= np.array((1,2,3,4)) + >>> np.hsplit(a,2) [array([1, 2]), array([3, 4])] - >>> a = array([[1,2,3,4],[1,2,3,4]]) - >>> hsplit(a,2) + >>> a = np.array([[1,2,3,4],[1,2,3,4]]) + >>> np.hsplit(a,2) [array([[1, 2], [1, 2]]), array([[3, 4], [3, 4]])] @@ -482,9 +478,9 @@ def vsplit(ary,indices_or_sections): vstack, split, array_split, hsplit, dsplit. Examples: import numpy - >>> a = array([[1,2,3,4], - ... [1,2,3,4]]) - >>> numpy.vsplit(a,2) + >>> a = np.array([[1,2,3,4], + ... [1,2,3,4]]) + >>> np.vsplit(a,2) [array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])] """ @@ -519,8 +515,8 @@ def dsplit(ary,indices_or_sections): Related: dstack, split, array_split, hsplit, vsplit. Examples: - >>> a = array([[[1,2,3,4],[1,2,3,4]]]) - >>> dsplit(a,2) + >>> a = np.array([[[1,2,3,4],[1,2,3,4]]]) + >>> np.dsplit(a,2) [array([[[1, 2], [1, 2]]]), array([[[3, 4], [3, 4]]])] @@ -596,15 +592,15 @@ def tile(A, reps): Examples: - >>> a = array([0,1,2]) - >>> tile(a,2) + >>> a = np.array([0,1,2]) + >>> np.tile(a,2) array([0, 1, 2, 0, 1, 2]) - >>> tile(a,(1,2)) + >>> np.tile(a,(1,2)) array([[0, 1, 2, 0, 1, 2]]) - >>> tile(a,(2,2)) + >>> np.tile(a,(2,2)) array([[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) - >>> tile(a,(2,1,2)) + >>> np.tile(a,(2,1,2)) array([[[0, 1, 2, 0, 1, 2]], <BLANKLINE> [[0, 1, 2, 0, 1, 2]]]) diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index 44082521c..ab1e5fcf0 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -88,13 +88,13 @@ def diagflat(v,k=0): Examples -------- - >>> diagflat([[1,2],[3,4]]]) + >>> np.diagflat([[1,2],[3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) - >>> diagflat([1,2], 1) + >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) @@ -180,8 +180,8 @@ def histogram2d(x,y, bins=10, range=None, normed=False, weights=None): - `xedges, yedges` : Arrays defining the bin edges. Example: - >>> x = random.randn(100,2) - >>> hist2d, xedges, yedges = histogram2d(x, bins = (6, 7)) + >>> x = np.random.randn(100,2) + >>> hist2d, xedges, yedges = np.lib.histogram2d(x, bins = (6, 7)) :SeeAlso: histogramdd """ diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py index 4231bae51..1f28967e3 100644 --- a/numpy/linalg/linalg.py +++ b/numpy/linalg/linalg.py @@ -163,18 +163,17 @@ def tensorsolve(a, b, axes=None): Examples -------- - >>> from numpy import * - >>> a = eye(2*3*4) + >>> a = np.eye(2*3*4) >>> a.shape = (2*3,4, 2,3,4) - >>> b = random.randn(2*3,4) - >>> x = linalg.tensorsolve(a, b) + >>> b = np.random.randn(2*3,4) + >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) - >>> allclose(tensordot(a, x, axes=3), b) + >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ - a = asarray(a) + a,wrap = _makearray(a) b = asarray(b) an = a.ndim @@ -266,23 +265,22 @@ def tensorinv(a, ind=2): Examples -------- - >>> from numpy import * - >>> a = eye(4*6) + >>> a = np.eye(4*6) >>> a.shape = (4,6,8,3) - >>> ainv = linalg.tensorinv(a, ind=2) + >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) - >>> b = random.randn(4,6) - >>> allclose(tensordot(ainv, b), linalg.tensorsolve(a, b)) + >>> b = np.random.randn(4,6) + >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True - >>> a = eye(4*6) + >>> a = np.eye(4*6) >>> a.shape = (24,8,3) - >>> ainv = linalg.tensorinv(a, ind=1) + >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) - >>> b = random.randn(24) - >>> allclose(tensordot(ainv, b, 1), linalg.tensorsolve(a, b)) + >>> b = np.random.randn(24) + >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) @@ -318,12 +316,11 @@ def inv(a): Examples -------- - >>> from numpy import array, inv, dot - >>> a = array([[1., 2.], [3., 4.]]) - >>> inv(a) + >>> a = np.array([[1., 2.], [3., 4.]]) + >>> np.linalg.inv(a) array([[-2. , 1. ], [ 1.5, -0.5]]) - >>> dot(a, inv(a)) + >>> np.dot(a, np.linalg.inv(a)) array([[ 1., 0.], [ 0., 1.]]) @@ -360,7 +357,7 @@ def cholesky(a): >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) - >>> dot(L, L.T.conj()) + >>> np.dot(L, L.T.conj()) array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) @@ -427,16 +424,15 @@ def qr(a, mode='full'): Examples -------- - >>> from numpy import * - >>> a = random.randn(9, 6) - >>> q, r = linalg.qr(a) - >>> allclose(a, dot(q, r)) + >>> a = np.random.randn(9, 6) + >>> q, r = np.linalg.qr(a) + >>> np.allclose(a, np.dot(q, r)) True - >>> r2 = linalg.qr(a, mode='r') - >>> r3 = linalg.qr(a, mode='economic') - >>> allclose(r, r2) + >>> r2 = np.linalg.qr(a, mode='r') + >>> r3 = np.linalg.qr(a, mode='economic') + >>> np.allclose(r, r2) True - >>> allclose(r, triu(r3[:6,:6], k=0)) + >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True """ @@ -909,20 +905,20 @@ def svd(a, full_matrices=1, compute_uv=1): Examples -------- - >>> a = random.randn(9, 6) + 1j*random.randn(9, 6) - >>> U, s, Vh = linalg.svd(a) + >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) + >>> U, s, Vh = np.linalg.svd(a) >>> U.shape, Vh.shape, s.shape ((9, 9), (6, 6), (6,)) - >>> U, s, Vh = linalg.svd(a, full_matrices=False) + >>> U, s, Vh = np.linalg.svd(a, full_matrices=False) >>> U.shape, Vh.shape, s.shape ((9, 6), (6, 6), (6,)) - >>> S = diag(s) - >>> allclose(a, dot(U, dot(S, Vh))) + >>> S = np.diag(s) + >>> np.allclose(a, np.dot(U, np.dot(S, Vh))) True - >>> s2 = linalg.svd(a, compute_uv=False) - >>> allclose(s, s2) + >>> s2 = np.linalg.svd(a, compute_uv=False) + >>> np.allclose(s, s2) True """ a, wrap = _makearray(a) @@ -1048,12 +1044,11 @@ def pinv(a, rcond=1e-15 ): Examples -------- - >>> from numpy import * - >>> a = random.randn(9, 6) - >>> B = linalg.pinv(a) - >>> allclose(a, dot(a, dot(B, a))) + >>> a = np.random.randn(9, 6) + >>> B = np.linalg.pinv(a) + >>> np.allclose(a, np.dot(a, np.dot(B, a))) True - >>> allclose(B, dot(B, dot(a, B))) + >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ diff --git a/numpy/ma/core.py b/numpy/ma/core.py index 368abd11d..21c2f44d4 100644 --- a/numpy/ma/core.py +++ b/numpy/ma/core.py @@ -1694,7 +1694,7 @@ class MaskedArray(ndarray): Examples -------- - >>> x = array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999) + >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999) >>> x.filled() array([1,2,-999,4,-999]) >>> type(x.filled()) @@ -2116,10 +2116,10 @@ masked_%(name)s(data = %(data)s, Example ------- - >>> array([1,2,3]).all() + >>> np.ma.array([1,2,3]).all() True - >>> a = array([1,2,3], mask=True) - >>> (a.all() is masked) + >>> a = np.ma.array([1,2,3], mask=True) + >>> (a.all() is np.ma.masked) True """ @@ -2293,7 +2293,7 @@ masked_%(name)s(data = %(data)s, Example ------- - >>> print array(arange(10),mask=[0,0,0,1,1,1,0,0,0,0]).cumsum() + >>> print np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0]).cumsum() [0 1 3 -- -- -- 9 16 24 33] @@ -2348,13 +2348,13 @@ masked_%(name)s(data = %(data)s, Examples -------- - >>> prod([1.,2.]) + >>> np.prod([1.,2.]) 2.0 - >>> prod([1.,2.], dtype=int32) + >>> np.prod([1.,2.], dtype=np.int32) 2 - >>> prod([[1.,2.],[3.,4.]]) + >>> np.prod([[1.,2.],[3.,4.]]) 24.0 - >>> prod([[1.,2.],[3.,4.]], axis=1) + >>> np.prod([[1.,2.],[3.,4.]], axis=1) array([ 2., 12.]) Notes @@ -2755,7 +2755,7 @@ masked_%(name)s(data = %(data)s, Examples -------- - >>> a = arange(6).reshape(2,3) + >>> a = np.arange(6).reshape(2,3) >>> a.argmax() 5 >>> a.argmax(0) diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py index f369180f2..ab24d41c0 100644 --- a/numpy/ma/extras.py +++ b/numpy/ma/extras.py @@ -716,7 +716,7 @@ class mr_class(MAxisConcatenator): """Translate slice objects to concatenation along the first axis. For example: - >>> mr_[array([1,2,3]), 0, 0, array([4,5,6])] + >>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])] array([1, 2, 3, 0, 0, 4, 5, 6]) """ diff --git a/numpy/testing/decorators.py b/numpy/testing/decorators.py index 1c86a8d55..dd9783e2f 100644 --- a/numpy/testing/decorators.py +++ b/numpy/testing/decorators.py @@ -30,6 +30,7 @@ def setastest(tf=True): If True specifies this is a test, not a test otherwise e.g + >>> from numpy.testing.decorators import setastest >>> @setastest(False) ... def func_with_test_in_name(arg1, arg2): pass ... |