summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlan McIntyre <alan.mcintyre@local>2008-07-05 14:26:16 +0000
committerAlan McIntyre <alan.mcintyre@local>2008-07-05 14:26:16 +0000
commit36e02207c1a82fe669531dd24ec799eca2989c80 (patch)
tree104f800d6800c4a01a0aecac323a8a70517aa94b
parentf07e385b69ee59ef6abe05f164138dc6a7279291 (diff)
downloadnumpy-36e02207c1a82fe669531dd24ec799eca2989c80.tar.gz
Use the implicit "import numpy as np" made available to all doctests instead
of explicit imports or dependency on the local scope where the doctest is defined..
-rw-r--r--numpy/add_newdocs.py76
-rw-r--r--numpy/lib/financial.py8
-rw-r--r--numpy/lib/function_base.py33
-rw-r--r--numpy/lib/io.py6
-rw-r--r--numpy/lib/polynomial.py4
-rw-r--r--numpy/lib/scimath.py63
-rw-r--r--numpy/lib/shape_base.py70
-rw-r--r--numpy/lib/twodim_base.py8
-rw-r--r--numpy/linalg/linalg.py75
-rw-r--r--numpy/ma/core.py20
-rw-r--r--numpy/ma/extras.py2
-rw-r--r--numpy/testing/decorators.py1
12 files changed, 178 insertions, 188 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index c44ba9094..eb1083df7 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -19,46 +19,46 @@ Examples
--------
Using array-scalar type:
->>> dtype(int16)
+>>> np.dtype(np.int16)
dtype('int16')
Record, one field name 'f1', containing int16:
->>> dtype([('f1', int16)])
+>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])
Record, one field named 'f1', in itself containing a record with one field:
->>> dtype([('f1', [('f1', int16)])])
+>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])
Record, two fields: the first field contains an unsigned int, the
second an int32:
->>> dtype([('f1', uint), ('f2', int32)])
+>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])
Using array-protocol type strings:
->>> dtype([('a','f8'),('b','S10')])
+>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])
Using comma-separated field formats. The shape is (2,3):
->>> dtype("i4, (2,3)f8")
+>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
is a flexible type, here of size 10:
->>> dtype([('hello',(int,3)),('world',void,10)])
+>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])
Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
the offsets in bytes:
->>> dtype((int16, {'x':(int8,0), 'y':(int8,1)}))
+>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
Using dictionaries. Two fields named 'gender' and 'age':
->>> dtype({'names':['gender','age'], 'formats':['S1',uint8]})
+>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])
Offsets in bytes, here 0 and 25:
->>> dtype({'surname':('S25',0),'age':(uint8,25)})
+>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])
""")
@@ -386,7 +386,7 @@ add_newdoc('numpy.core.multiarray','concatenate',
Examples
--------
- >>> concatenate( ([0,1,2], [5,6,7]) )
+ >>> np.concatenate( ([0,1,2], [5,6,7]) )
array([0, 1, 2, 5, 6, 7])
""")
@@ -480,7 +480,7 @@ add_newdoc('numpy.core.multiarray','where',
Examples
--------
- >>> where([True,False,True],[1,2,3],[4,5,6])
+ >>> np.where([True,False,True],[1,2,3],[4,5,6])
array([1, 5, 3])
""")
@@ -520,12 +520,12 @@ add_newdoc('numpy.core.multiarray','lexsort',
--------
>>> a = [1,5,1,4,3,6,7]
>>> b = [9,4,0,4,0,4,3]
- >>> ind = lexsort((b,a))
+ >>> ind = np.lexsort((b,a))
>>> print ind
[2 0 4 3 1 5 6]
- >>> print take(a,ind)
+ >>> print np.take(a,ind)
[1 1 3 4 5 6 7]
- >>> print take(b,ind)
+ >>> print np.take(b,ind)
[0 9 0 4 4 4 3]
""")
@@ -858,7 +858,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
Examples
--------
- >>> a = arange(6).reshape(2,3)
+ >>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
@@ -889,7 +889,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
Examples
--------
- >>> a = arange(6).reshape(2,3)
+ >>> a = np.arange(6).reshape(2,3)
>>> a.argmin()
0
>>> a.argmin(0)
@@ -1008,10 +1008,10 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
--------
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
- >>> a = array([2, 3, 1, 0], dtype=int)
+ >>> a = np.array([2, 3, 1, 0], dtype=int)
>>> a.choose(choices)
array([20, 31, 12, 3])
- >>> a = array([2, 4, 1, 0], dtype=int)
+ >>> a = np.array([2, 4, 1, 0], dtype=int)
>>> a.choose(choices, mode='clip')
array([20, 31, 12, 3])
>>> a.choose(choices, mode='wrap')
@@ -1226,7 +1226,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
Examples
--------
- >>> a = arange(4).reshape(2,2)
+ >>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
@@ -1235,7 +1235,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
>>> a.diagonal(1)
array([1])
- >>> a = arange(8).reshape(2,2,2)
+ >>> a = np.arange(8).reshape(2,2,2)
>>> a
array([[[0, 1],
[2, 3]],
@@ -1462,13 +1462,13 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
Examples
--------
- >>> prod([1.,2.])
+ >>> np.prod([1.,2.])
2.0
- >>> prod([1.,2.], dtype=int32)
+ >>> np.prod([1.,2.], dtype=np.int32)
2
- >>> prod([[1.,2.],[3.,4.]])
+ >>> np.prod([[1.,2.],[3.,4.]])
24.0
- >>> prod([[1.,2.],[3.,4.]], axis=1)
+ >>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
Notes
@@ -1599,7 +1599,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
Examples
--------
- >>> x = array([[1,2,3],[4,5,6]])
+ >>> x = np.array([[1,2,3],[4,5,6]])
>>> x
array([[1, 2, 3],
[4, 5, 6]])
@@ -1637,7 +1637,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
Examples
--------
- >>> x = array([[1,2],[3,4]])
+ >>> x = np.array([[1,2],[3,4]])
>>> x.repeat(2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> x.repeat(3, axis=1)
@@ -1725,10 +1725,10 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
Examples
--------
- >>> x = array([.5, 1.5, 2.5, 3.5, 4.5])
+ >>> x = np.array([.5, 1.5, 2.5, 3.5, 4.5])
>>> x.round()
array([ 0., 2., 2., 4., 4.])
- >>> x = array([1,2,3,11])
+ >>> x = np.array([1,2,3,11])
>>> x.round(decimals=1)
array([ 1, 2, 3, 11])
>>> x.round(decimals=-1)
@@ -1840,7 +1840,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
Examples
--------
- >>> x = array([[[1,1,1],[2,2,2],[3,3,3]]])
+ >>> x = np.array([[[1,1,1],[2,2,2],[3,3,3]]])
>>> x.shape
(1, 3, 3)
>>> x.squeeze().shape
@@ -1929,15 +1929,15 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
Examples
--------
- >>> array([0.5, 1.5]).sum()
+ >>> np.array([0.5, 1.5]).sum()
2.0
- >>> array([0.5, 1.5]).sum(dtype=int32)
+ >>> np.array([0.5, 1.5]).sum(dtype=np.int32)
1
- >>> array([[0, 1], [0, 5]]).sum(axis=0)
+ >>> np.array([[0, 1], [0, 5]]).sum(axis=0)
array([0, 6])
- >>> array([[0, 1], [0, 5]]).sum(axis=1)
+ >>> np.array([[0, 1], [0, 5]]).sum(axis=1)
array([1, 5])
- >>> ones(128, dtype=int8).sum(dtype=int8) # overflow!
+ >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) # overflow!
-128
Notes
@@ -2120,9 +2120,9 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
Examples
--------
- >>> eye(3).trace()
+ >>> np.eye(3).trace()
3.0
- >>> a = arange(8).reshape((2,2,2))
+ >>> a = np.arange(8).reshape((2,2,2))
>>> a.trace()
array([6, 8])
@@ -2139,7 +2139,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
Examples
--------
- >>> a = array([[1,2],[3,4]])
+ >>> a = np.array([[1,2],[3,4]])
>>> a
array([[1, 2],
[3, 4]])
diff --git a/numpy/lib/financial.py b/numpy/lib/financial.py
index a3552ebc0..9c5d2753a 100644
--- a/numpy/lib/financial.py
+++ b/numpy/lib/financial.py
@@ -69,7 +69,7 @@ What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100. Assume the interest rate is
5% (annually) compounded monthly?
->>> fv(0.05/12, 10*12, -100, -100)
+>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748
By convention, the negative sign represents cash flow out (i.e. money not
@@ -94,7 +94,7 @@ Examples
What would the monthly payment need to be to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?
->>> pmt(0.075/12, 12*15, 200000)
+>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619
In order to pay-off (i.e. have a future-value of 0) the $200,000 obtained
@@ -122,7 +122,7 @@ Examples
If you only had $150 to spend as payment, how long would it take to pay-off
a loan of $8,000 at 7% annual interest?
->>> nper(0.07/12, -150, 8000)
+>>> np.nper(0.07/12, -150, 8000)
64.073348770661852
So, over 64 months would be required to pay off the loan.
@@ -130,7 +130,7 @@ So, over 64 months would be required to pay off the loan.
The same analysis could be done with several different interest rates and/or
payments and/or total amounts to produce an entire table.
->>> nper(*(ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000]))
+>>> np.nper(*(np.ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000]))
array([[[ 32.58497782, 38.57048452],
[ 71.51317802, 86.37179563]],
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index fe6e67903..e8df0b439 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -471,7 +471,7 @@ def average(a, axis=None, weights=None, returned=False):
Examples
--------
- >>> average(range(1,11), weights=range(10,0,-1))
+ >>> np.average(range(1,11), weights=range(10,0,-1))
4.0
Raises
@@ -893,7 +893,7 @@ def trim_zeros(filt, trim='fb'):
Examples
--------
- >>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0))
+ >>> a = np.array((0, 0, 0, 1, 2, 3, 2, 1, 0))
>>> np.trim_zeros(a)
array([1, 2, 3, 2, 1])
@@ -1069,7 +1069,7 @@ class vectorize(object):
... else:
... return a+b
- >>> vfunc = vectorize(myfunc)
+ >>> vfunc = np.vectorize(myfunc)
>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])
@@ -1486,29 +1486,28 @@ def median(a, axis=0, out=None, overwrite_input=False):
Examples
--------
- >>> from numpy import median
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
- >>> median(a)
+ >>> np.median(a)
array([ 6.5, 4.5, 2.5])
- >>> median(a, axis=None)
+ >>> np.median(a, axis=None)
3.5
- >>> median(a, axis=1)
+ >>> np.median(a, axis=1)
array([ 7., 2.])
- >>> m = median(a)
+ >>> m = np.median(a)
>>> out = np.zeros_like(m)
- >>> median(a, out=m)
+ >>> np.median(a, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
- >>> median(b, axis=1, overwrite_input=True)
+ >>> np.median(b, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
- >>> median(b, axis=None, overwrite_input=True)
+ >>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)
"""
@@ -1632,11 +1631,11 @@ def delete(arr, obj, axis=None):
... [1,2,3],
... [6,7,8]]
- >>> delete(arr, 1, 1)
+ >>> np.delete(arr, 1, 1)
array([[3, 5],
[1, 3],
[6, 8]])
- >>> delete(arr, 1, 0)
+ >>> np.delete(arr, 1, 0)
array([[3, 4, 5],
[6, 7, 8]])
"""
@@ -1732,11 +1731,11 @@ def insert(arr, obj, values, axis=None):
Examples
--------
- >>> a = array([[1,2,3],
- ... [4,5,6],
- ... [7,8,9]])
+ >>> a = np.array([[1,2,3],
+ ... [4,5,6],
+ ... [7,8,9]])
- >>> insert(a, [1,2], [[4],[5]], axis=0)
+ >>> np.insert(a, [1,2], [[4],[5]], axis=0)
array([[1, 2, 3],
[4, 4, 4],
[4, 5, 6],
diff --git a/numpy/lib/io.py b/numpy/lib/io.py
index db4e73358..36723f1d8 100644
--- a/numpy/lib/io.py
+++ b/numpy/lib/io.py
@@ -344,9 +344,9 @@ def savetxt(fname, X, fmt='%.18e',delimiter=' '):
Examples
--------
- >>> savetxt('test.out', x, delimiter=',') # X is an array
- >>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
- >>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation
+ >>> np.savetxt('test.out', x, delimiter=',') # X is an array
+ >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
+ >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation
Notes on fmt
------------
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py
index 303cdb13c..8fb0337dc 100644
--- a/numpy/lib/polynomial.py
+++ b/numpy/lib/polynomial.py
@@ -52,8 +52,8 @@ def poly(seq_of_zeros):
Example:
- >>> b = roots([1,3,1,5,6])
- >>> poly(b)
+ >>> b = np.roots([1,3,1,5,6])
+ >>> np.poly(b)
array([ 1., 3., 1., 5., 6.])
"""
diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py
index d3965668d..2a951135a 100644
--- a/numpy/lib/scimath.py
+++ b/numpy/lib/scimath.py
@@ -50,8 +50,8 @@ def _tocomplex(arr):
>>> a = np.array([1,2,3],np.short)
- >>> ac = _tocomplex(a); ac
- array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
+ >>> ac = np.lib.scimath._tocomplex(a); ac
+ array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=np.complex64)
>>> ac.dtype
dtype('complex64')
@@ -61,7 +61,7 @@ def _tocomplex(arr):
>>> b = np.array([1,2,3],np.double)
- >>> bc = _tocomplex(b); bc
+ >>> bc = np.lib.scimath._tocomplex(b); bc
array([ 1.+0.j, 2.+0.j, 3.+0.j])
>>> bc.dtype
@@ -72,7 +72,7 @@ def _tocomplex(arr):
>>> c = np.array([1,2,3],np.csingle)
- >>> cc = _tocomplex(c); cc
+ >>> cc = np.lib.scimath._tocomplex(c); cc
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> c *= 2; c
@@ -102,10 +102,10 @@ def _fix_real_lt_zero(x):
Examples
--------
- >>> _fix_real_lt_zero([1,2])
+ >>> np.lib.scimath._fix_real_lt_zero([1,2])
array([1, 2])
- >>> _fix_real_lt_zero([-1,2])
+ >>> np.lib.scimath._fix_real_lt_zero([-1,2])
array([-1.+0.j, 2.+0.j])
"""
x = asarray(x)
@@ -128,10 +128,10 @@ def _fix_int_lt_zero(x):
Examples
--------
- >>> _fix_int_lt_zero([1,2])
+ >>> np.lib.scimath._fix_int_lt_zero([1,2])
array([1, 2])
- >>> _fix_int_lt_zero([-1,2])
+ >>> np.lib.scimath._fix_int_lt_zero([-1,2])
array([-1., 2.])
"""
x = asarray(x)
@@ -154,10 +154,10 @@ def _fix_real_abs_gt_1(x):
Examples
--------
- >>> _fix_real_abs_gt_1([0,1])
+ >>> np.lib.scimath._fix_real_abs_gt_1([0,1])
array([0, 1])
- >>> _fix_real_abs_gt_1([0,2])
+ >>> np.lib.scimath._fix_real_abs_gt_1([0,2])
array([ 0.+0.j, 2.+0.j])
"""
x = asarray(x)
@@ -180,17 +180,17 @@ def sqrt(x):
--------
For real, non-negative inputs this works just like numpy.sqrt():
- >>> sqrt(1)
+ >>> np.lib.scimath.sqrt(1)
1.0
- >>> sqrt([1,4])
+ >>> np.lib.scimath.sqrt([1,4])
array([ 1., 2.])
But it automatically handles negative inputs:
- >>> sqrt(-1)
+ >>> np.lib.scimath.sqrt(-1)
(0.0+1.0j)
- >>> sqrt([-1,4])
+ >>> np.lib.scimath.sqrt([-1,4])
array([ 0.+1.j, 2.+0.j])
"""
x = _fix_real_lt_zero(x)
@@ -213,14 +213,13 @@ def log(x):
Examples
--------
>>> import math
-
- >>> log(math.exp(1))
+ >>> np.lib.scimath.log(math.exp(1))
1.0
Negative arguments are correctly handled (recall that for negative
arguments, the identity exp(log(z))==z does not hold anymore):
- >>> log(-math.exp(1)) == (1+1j*math.pi)
+ >>> np.lib.scimath.log(-math.exp(1)) == (1+1j*math.pi)
True
"""
x = _fix_real_lt_zero(x)
@@ -246,11 +245,11 @@ def log10(x):
(We set the printing precision so the example can be auto-tested)
>>> np.set_printoptions(precision=4)
- >>> log10([10**1,10**2])
+ >>> np.lib.scimath.log10([10**1,10**2])
array([ 1., 2.])
- >>> log10([-10**1,-10**2,10**2])
+ >>> np.lib.scimath.log10([-10**1,-10**2,10**2])
array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ])
"""
x = _fix_real_lt_zero(x)
@@ -276,10 +275,10 @@ def logn(n, x):
(We set the printing precision so the example can be auto-tested)
>>> np.set_printoptions(precision=4)
- >>> logn(2,[4,8])
+ >>> np.lib.scimath.logn(2,[4,8])
array([ 2., 3.])
- >>> logn(2,[-4,-8,8])
+ >>> np.lib.scimath.logn(2,[-4,-8,8])
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
@@ -306,10 +305,10 @@ def log2(x):
(We set the printing precision so the example can be auto-tested)
>>> np.set_printoptions(precision=4)
- >>> log2([4,8])
+ >>> np.lib.scimath.log2([4,8])
array([ 2., 3.])
- >>> log2([-4,-8,8])
+ >>> np.lib.scimath.log2([-4,-8,8])
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
@@ -336,13 +335,13 @@ def power(x, p):
(We set the printing precision so the example can be auto-tested)
>>> np.set_printoptions(precision=4)
- >>> power([2,4],2)
+ >>> np.lib.scimath.power([2,4],2)
array([ 4, 16])
- >>> power([2,4],-2)
+ >>> np.lib.scimath.power([2,4],-2)
array([ 0.25 , 0.0625])
- >>> power([-2,4],2)
+ >>> np.lib.scimath.power([-2,4],2)
array([ 4.+0.j, 16.+0.j])
"""
x = _fix_real_lt_zero(x)
@@ -368,10 +367,10 @@ def arccos(x):
--------
>>> np.set_printoptions(precision=4)
- >>> arccos(1)
+ >>> np.lib.scimath.arccos(1)
0.0
- >>> arccos([1,2])
+ >>> np.lib.scimath.arccos([1,2])
array([ 0.-0.j , 0.+1.317j])
"""
x = _fix_real_abs_gt_1(x)
@@ -397,10 +396,10 @@ def arcsin(x):
(We set the printing precision so the example can be auto-tested)
>>> np.set_printoptions(precision=4)
- >>> arcsin(0)
+ >>> np.lib.scimath.arcsin(0)
0.0
- >>> arcsin([0,1])
+ >>> np.lib.scimath.arcsin([0,1])
array([ 0. , 1.5708])
"""
x = _fix_real_abs_gt_1(x)
@@ -426,10 +425,10 @@ def arctanh(x):
(We set the printing precision so the example can be auto-tested)
>>> np.set_printoptions(precision=4)
- >>> arctanh(0)
+ >>> np.lib.scimath.arctanh(0)
0.0
- >>> arctanh([0,2])
+ >>> np.lib.scimath.arctanh([0,2])
array([ 0.0000+0.j , 0.5493-1.5708j])
"""
x = _fix_real_abs_gt_1(x)
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index 77f158eb3..afdb879e4 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -192,13 +192,13 @@ def vstack(tup):
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
+ >>> a = np.array([[1],[2],[3]])
+ >>> b = np.array([[2],[3],[4]])
>>> np.vstack((a,b))
array([[1],
[2],
@@ -222,14 +222,13 @@ def hstack(tup):
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.hstack((a,b))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
+ >>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
- >>> numpy.hstack((a,b))
+ >>> a = np.array([[1],[2],[3]])
+ >>> b = np.array([[2],[3],[4]])
+ >>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
@@ -253,10 +252,9 @@ def column_stack(tup):
tup -- sequence of 1D or 2D arrays. All arrays must have the same
first dimension.
Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.column_stack((a,b))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
+ >>> np.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
@@ -283,16 +281,15 @@ def dstack(tup):
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.dstack((a,b))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
+ >>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
- >>> numpy.dstack((a,b))
+ >>> a = np.array([[1],[2],[3]])
+ >>> b = np.array([[2],[3],[4]])
+ >>> np.dstack((a,b))
array([[[1, 2]],
<BLANKLINE>
[[2, 3]],
@@ -432,12 +429,11 @@ def hsplit(ary,indices_or_sections):
Related:
hstack, split, array_split, vsplit, dsplit.
Examples:
- >>> import numpy
- >>> a= array((1,2,3,4))
- >>> numpy.hsplit(a,2)
+ >>> a= np.array((1,2,3,4))
+ >>> np.hsplit(a,2)
[array([1, 2]), array([3, 4])]
- >>> a = array([[1,2,3,4],[1,2,3,4]])
- >>> hsplit(a,2)
+ >>> a = np.array([[1,2,3,4],[1,2,3,4]])
+ >>> np.hsplit(a,2)
[array([[1, 2],
[1, 2]]), array([[3, 4],
[3, 4]])]
@@ -482,9 +478,9 @@ def vsplit(ary,indices_or_sections):
vstack, split, array_split, hsplit, dsplit.
Examples:
import numpy
- >>> a = array([[1,2,3,4],
- ... [1,2,3,4]])
- >>> numpy.vsplit(a,2)
+ >>> a = np.array([[1,2,3,4],
+ ... [1,2,3,4]])
+ >>> np.vsplit(a,2)
[array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])]
"""
@@ -519,8 +515,8 @@ def dsplit(ary,indices_or_sections):
Related:
dstack, split, array_split, hsplit, vsplit.
Examples:
- >>> a = array([[[1,2,3,4],[1,2,3,4]]])
- >>> dsplit(a,2)
+ >>> a = np.array([[[1,2,3,4],[1,2,3,4]]])
+ >>> np.dsplit(a,2)
[array([[[1, 2],
[1, 2]]]), array([[[3, 4],
[3, 4]]])]
@@ -596,15 +592,15 @@ def tile(A, reps):
Examples:
- >>> a = array([0,1,2])
- >>> tile(a,2)
+ >>> a = np.array([0,1,2])
+ >>> np.tile(a,2)
array([0, 1, 2, 0, 1, 2])
- >>> tile(a,(1,2))
+ >>> np.tile(a,(1,2))
array([[0, 1, 2, 0, 1, 2]])
- >>> tile(a,(2,2))
+ >>> np.tile(a,(2,2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
- >>> tile(a,(2,1,2))
+ >>> np.tile(a,(2,1,2))
array([[[0, 1, 2, 0, 1, 2]],
<BLANKLINE>
[[0, 1, 2, 0, 1, 2]]])
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index 44082521c..ab1e5fcf0 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -88,13 +88,13 @@ def diagflat(v,k=0):
Examples
--------
- >>> diagflat([[1,2],[3,4]]])
+ >>> np.diagflat([[1,2],[3,4]])
array([[1, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])
- >>> diagflat([1,2], 1)
+ >>> np.diagflat([1,2], 1)
array([[0, 1, 0],
[0, 0, 2],
[0, 0, 0]])
@@ -180,8 +180,8 @@ def histogram2d(x,y, bins=10, range=None, normed=False, weights=None):
- `xedges, yedges` : Arrays defining the bin edges.
Example:
- >>> x = random.randn(100,2)
- >>> hist2d, xedges, yedges = histogram2d(x, bins = (6, 7))
+ >>> x = np.random.randn(100,2)
+ >>> hist2d, xedges, yedges = np.lib.histogram2d(x, bins = (6, 7))
:SeeAlso: histogramdd
"""
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 4231bae51..1f28967e3 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -163,18 +163,17 @@ def tensorsolve(a, b, axes=None):
Examples
--------
- >>> from numpy import *
- >>> a = eye(2*3*4)
+ >>> a = np.eye(2*3*4)
>>> a.shape = (2*3,4, 2,3,4)
- >>> b = random.randn(2*3,4)
- >>> x = linalg.tensorsolve(a, b)
+ >>> b = np.random.randn(2*3,4)
+ >>> x = np.linalg.tensorsolve(a, b)
>>> x.shape
(2, 3, 4)
- >>> allclose(tensordot(a, x, axes=3), b)
+ >>> np.allclose(np.tensordot(a, x, axes=3), b)
True
"""
- a = asarray(a)
+ a,wrap = _makearray(a)
b = asarray(b)
an = a.ndim
@@ -266,23 +265,22 @@ def tensorinv(a, ind=2):
Examples
--------
- >>> from numpy import *
- >>> a = eye(4*6)
+ >>> a = np.eye(4*6)
>>> a.shape = (4,6,8,3)
- >>> ainv = linalg.tensorinv(a, ind=2)
+ >>> ainv = np.linalg.tensorinv(a, ind=2)
>>> ainv.shape
(8, 3, 4, 6)
- >>> b = random.randn(4,6)
- >>> allclose(tensordot(ainv, b), linalg.tensorsolve(a, b))
+ >>> b = np.random.randn(4,6)
+ >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
True
- >>> a = eye(4*6)
+ >>> a = np.eye(4*6)
>>> a.shape = (24,8,3)
- >>> ainv = linalg.tensorinv(a, ind=1)
+ >>> ainv = np.linalg.tensorinv(a, ind=1)
>>> ainv.shape
(8, 3, 24)
- >>> b = random.randn(24)
- >>> allclose(tensordot(ainv, b, 1), linalg.tensorsolve(a, b))
+ >>> b = np.random.randn(24)
+ >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
True
"""
a = asarray(a)
@@ -318,12 +316,11 @@ def inv(a):
Examples
--------
- >>> from numpy import array, inv, dot
- >>> a = array([[1., 2.], [3., 4.]])
- >>> inv(a)
+ >>> a = np.array([[1., 2.], [3., 4.]])
+ >>> np.linalg.inv(a)
array([[-2. , 1. ],
[ 1.5, -0.5]])
- >>> dot(a, inv(a))
+ >>> np.dot(a, np.linalg.inv(a))
array([[ 1., 0.],
[ 0., 1.]])
@@ -360,7 +357,7 @@ def cholesky(a):
>>> L
array([[ 1.+0.j, 0.+0.j],
[ 0.+2.j, 1.+0.j]])
- >>> dot(L, L.T.conj())
+ >>> np.dot(L, L.T.conj())
array([[ 1.+0.j, 0.-2.j],
[ 0.+2.j, 5.+0.j]])
@@ -427,16 +424,15 @@ def qr(a, mode='full'):
Examples
--------
- >>> from numpy import *
- >>> a = random.randn(9, 6)
- >>> q, r = linalg.qr(a)
- >>> allclose(a, dot(q, r))
+ >>> a = np.random.randn(9, 6)
+ >>> q, r = np.linalg.qr(a)
+ >>> np.allclose(a, np.dot(q, r))
True
- >>> r2 = linalg.qr(a, mode='r')
- >>> r3 = linalg.qr(a, mode='economic')
- >>> allclose(r, r2)
+ >>> r2 = np.linalg.qr(a, mode='r')
+ >>> r3 = np.linalg.qr(a, mode='economic')
+ >>> np.allclose(r, r2)
True
- >>> allclose(r, triu(r3[:6,:6], k=0))
+ >>> np.allclose(r, np.triu(r3[:6,:6], k=0))
True
"""
@@ -909,20 +905,20 @@ def svd(a, full_matrices=1, compute_uv=1):
Examples
--------
- >>> a = random.randn(9, 6) + 1j*random.randn(9, 6)
- >>> U, s, Vh = linalg.svd(a)
+ >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
+ >>> U, s, Vh = np.linalg.svd(a)
>>> U.shape, Vh.shape, s.shape
((9, 9), (6, 6), (6,))
- >>> U, s, Vh = linalg.svd(a, full_matrices=False)
+ >>> U, s, Vh = np.linalg.svd(a, full_matrices=False)
>>> U.shape, Vh.shape, s.shape
((9, 6), (6, 6), (6,))
- >>> S = diag(s)
- >>> allclose(a, dot(U, dot(S, Vh)))
+ >>> S = np.diag(s)
+ >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
True
- >>> s2 = linalg.svd(a, compute_uv=False)
- >>> allclose(s, s2)
+ >>> s2 = np.linalg.svd(a, compute_uv=False)
+ >>> np.allclose(s, s2)
True
"""
a, wrap = _makearray(a)
@@ -1048,12 +1044,11 @@ def pinv(a, rcond=1e-15 ):
Examples
--------
- >>> from numpy import *
- >>> a = random.randn(9, 6)
- >>> B = linalg.pinv(a)
- >>> allclose(a, dot(a, dot(B, a)))
+ >>> a = np.random.randn(9, 6)
+ >>> B = np.linalg.pinv(a)
+ >>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
- >>> allclose(B, dot(B, dot(a, B)))
+ >>> np.allclose(B, np.dot(B, np.dot(a, B)))
True
"""
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index 368abd11d..21c2f44d4 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -1694,7 +1694,7 @@ class MaskedArray(ndarray):
Examples
--------
- >>> x = array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
+ >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1,2,-999,4,-999])
>>> type(x.filled())
@@ -2116,10 +2116,10 @@ masked_%(name)s(data = %(data)s,
Example
-------
- >>> array([1,2,3]).all()
+ >>> np.ma.array([1,2,3]).all()
True
- >>> a = array([1,2,3], mask=True)
- >>> (a.all() is masked)
+ >>> a = np.ma.array([1,2,3], mask=True)
+ >>> (a.all() is np.ma.masked)
True
"""
@@ -2293,7 +2293,7 @@ masked_%(name)s(data = %(data)s,
Example
-------
- >>> print array(arange(10),mask=[0,0,0,1,1,1,0,0,0,0]).cumsum()
+ >>> print np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0]).cumsum()
[0 1 3 -- -- -- 9 16 24 33]
@@ -2348,13 +2348,13 @@ masked_%(name)s(data = %(data)s,
Examples
--------
- >>> prod([1.,2.])
+ >>> np.prod([1.,2.])
2.0
- >>> prod([1.,2.], dtype=int32)
+ >>> np.prod([1.,2.], dtype=np.int32)
2
- >>> prod([[1.,2.],[3.,4.]])
+ >>> np.prod([[1.,2.],[3.,4.]])
24.0
- >>> prod([[1.,2.],[3.,4.]], axis=1)
+ >>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
Notes
@@ -2755,7 +2755,7 @@ masked_%(name)s(data = %(data)s,
Examples
--------
- >>> a = arange(6).reshape(2,3)
+ >>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index f369180f2..ab24d41c0 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -716,7 +716,7 @@ class mr_class(MAxisConcatenator):
"""Translate slice objects to concatenation along the first axis.
For example:
- >>> mr_[array([1,2,3]), 0, 0, array([4,5,6])]
+ >>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])
"""
diff --git a/numpy/testing/decorators.py b/numpy/testing/decorators.py
index 1c86a8d55..dd9783e2f 100644
--- a/numpy/testing/decorators.py
+++ b/numpy/testing/decorators.py
@@ -30,6 +30,7 @@ def setastest(tf=True):
If True specifies this is a test, not a test otherwise
e.g
+ >>> from numpy.testing.decorators import setastest
>>> @setastest(False)
... def func_with_test_in_name(arg1, arg2): pass
...