diff options
author | njsmith <njs@pobox.com> | 2012-12-21 05:01:47 -0800 |
---|---|---|
committer | njsmith <njs@pobox.com> | 2012-12-21 05:01:47 -0800 |
commit | 3abd8699dc3c71e389356ca6d80a2cb9efa16151 (patch) | |
tree | 8ebd6d30f8bd13b1cee0df2762b96ff26bbdee05 | |
parent | c9325530b499f205b46d444d2f00be1bc49c9e23 (diff) | |
parent | b0ac985036918c39322e18d06bd69523cfef9e39 (diff) | |
download | numpy-3abd8699dc3c71e389356ca6d80a2cb9efa16151.tar.gz |
Merge pull request #2800 from seberg/issue2755
BUG: Fix regression for in1d with non-array input
-rw-r--r-- | numpy/lib/arraysetops.py | 4 | ||||
-rw-r--r-- | numpy/lib/tests/test_arraysetops.py | 18 |
2 files changed, 20 insertions, 2 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py index 20a0e7151..ae14970e2 100644 --- a/numpy/lib/arraysetops.py +++ b/numpy/lib/arraysetops.py @@ -324,6 +324,10 @@ def in1d(ar1, ar2, assume_unique=False): array([0, 2, 0]) """ + # Ravel both arrays, behavior for the first array could be different + ar1 = np.asarray(ar1).ravel() + ar2 = np.asarray(ar2).ravel() + # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: mask = np.zeros(len(ar1), dtype=np.bool) diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py index b0d2ca7c3..5f4f10c76 100644 --- a/numpy/lib/tests/test_arraysetops.py +++ b/numpy/lib/tests/test_arraysetops.py @@ -124,8 +124,9 @@ class TestSetOps(TestCase): # we use two different sizes for the b array here to test the # two different paths in in1d(). for mult in (1, 10): - a = np.array([5, 7, 1, 2]) - b = np.array([2, 4, 3, 1, 5] * mult) + # One check without np.array, to make sure lists are handled correct + a = [5, 7, 1, 2] + b = [2, 4, 3, 1, 5] * mult ec = np.array([True, False, True, True]) c = in1d(a, b, assume_unique=True) assert_array_equal(c, ec) @@ -188,6 +189,19 @@ class TestSetOps(TestCase): assert_array_equal(c, ec) + def test_in1d_ravel(self): + # Test that in1d ravels its input arrays. This is not documented + # behavior however. The test is to ensure consistentency. + a = np.arange(6).reshape(2,3) + b = np.arange(3,9).reshape(3,2) + long_b = np.arange(3, 63).reshape(30,2) + ec = np.array([False, False, False, True, True, True]) + + assert_array_equal(in1d(a, b, assume_unique=True), ec) + assert_array_equal(in1d(a, b, assume_unique=False), ec) + assert_array_equal(in1d(a, long_b, assume_unique=True), ec) + assert_array_equal(in1d(a, long_b, assume_unique=False), ec) + def test_union1d( self ): a = np.array( [5, 4, 7, 1, 2] ) b = np.array( [2, 4, 3, 3, 2, 1, 5] ) |