diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2016-01-19 11:46:11 -0700 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2016-01-19 11:46:11 -0700 |
commit | 5a36018eda95da0ecc10033c3301c11f038ed5ac (patch) | |
tree | 8cba4ddd1272d3c4427591590d8d210872b34492 | |
parent | 947be0f72a47590719e89cf23a6a5972a0cc5f24 (diff) | |
parent | d99acf9d561fbe535eccf344160c6e698d9ab6bb (diff) | |
download | numpy-5a36018eda95da0ecc10033c3301c11f038ed5ac.tar.gz |
Merge pull request #7052 from charris/fixup-polynomials
Refactor functionality added to the numpy.polynomial package in #6360.
-rw-r--r-- | doc/release/1.11.0-notes.rst | 27 | ||||
-rw-r--r-- | numpy/polynomial/_polybase.py | 13 | ||||
-rw-r--r-- | numpy/polynomial/chebyshev.py | 41 | ||||
-rw-r--r-- | numpy/polynomial/hermite.py | 37 | ||||
-rw-r--r-- | numpy/polynomial/hermite_e.py | 37 | ||||
-rw-r--r-- | numpy/polynomial/laguerre.py | 37 | ||||
-rw-r--r-- | numpy/polynomial/legendre.py | 37 | ||||
-rw-r--r-- | numpy/polynomial/polynomial.py | 41 |
8 files changed, 122 insertions, 148 deletions
diff --git a/doc/release/1.11.0-notes.rst b/doc/release/1.11.0-notes.rst index ea0e41694..3ce63b116 100644 --- a/doc/release/1.11.0-notes.rst +++ b/doc/release/1.11.0-notes.rst @@ -27,7 +27,7 @@ Future Changes * Relaxed stride checking will become the default in 1.12.0. * Support for Python 2.6, 3.2, and 3.3 will be dropped in 1.12.0. -* ``MaskedArray``s take views of data **and** masks when slicing in 1.12.0. +* ``MaskedArray`` takes view of data **and** mask when slicing in 1.12.0. Compatibility notes @@ -59,7 +59,8 @@ it handles by converting to UTC. However, the resulting datetime is timezone naive:: >>> np.datetime64('2000-01-01T00:00:00-08') - DeprecationWarning: parsing timezone aware datetimes is deprecated; this will raise an error in the future + DeprecationWarning: parsing timezone aware datetimes is deprecated; + this will raise an error in the future numpy.datetime64('2000-01-01T08:00:00') As a corollary to this change, we no longer prohibit casting between datetimes @@ -68,6 +69,11 @@ the rule for casting from dates to times is no longer ambiguous. pandas_: http://pandas.pydata.org +polynomial fit changes +~~~~~~~~~~~~~~~~~~~~~~ +The various fit functions in the numpy polynomial package no longer accept +non-integers for degree specification. + DeprecationWarning to error ~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -156,6 +162,14 @@ New Features * ``np.moveaxis`` allows for moving one or more array axes to a new position by explicitly providing source and destination axes. +* numpy.polynomial fits now support degree selection. The ``deg`` + parameter was extended to allow fitting using only specified terms in the + polynomial expansion for all polynomial types. The change is backward + compatible and it is still possible to specify ``deg`` as before, but it + is now possible pass ``deg`` as a list specifying which terms in the + series to use in the fit. + + Improvements ============ @@ -208,6 +222,7 @@ Speed improvement for np.random.shuffle ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``np.random.shuffle`` is now much faster for 1d ndarrays. + Changes ======= Pyrex support was removed from ``numpy.distutils``. The method @@ -240,14 +255,6 @@ arguments cannot be cast to a common type, it could have raised a ``TypeError`` or ``ValueError`` depending on their order. Now, ``np.dot`` will now always raise a ``TypeError``. -numpy.polynomial.*fit now supports restricted fitting -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The ``deg`` parameter was extended to allow restricted fitting of -specified terms in the polynomial expansion for all polynomial -types. This change is backward compatible and it is still possible to -specify ``deg`` as a single integer to specify the maximum -order/degree of polynomial used in the fit, but it is now possible for -``deg`` to be a list specifying which terms in the series to fit. Deprecations ============ diff --git a/numpy/polynomial/_polybase.py b/numpy/polynomial/_polybase.py index 37eb59f03..6fa72b6f9 100644 --- a/numpy/polynomial/_polybase.py +++ b/numpy/polynomial/_polybase.py @@ -739,14 +739,11 @@ class ABCPolyBase(object): y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. - deg : int or array_like - Degree of the fitting polynomial. If `deg` is a single integer - all terms up to and including the `deg`'th term are included. - `deg` may alternatively be a list or array specifying which - terms in the Legendre expansion to include in the fit. - - .. versionchanged:: 1.11.0 - `deg` may be a list specifying which terms to fit + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For Numpy versions >= 1.11 a list of integers specifying the + degrees of the terms to include may be used instead. domain : {None, [beg, end], []}, optional Domain to use for the returned series. If ``None``, then a minimal domain that covers the points `x` is chosen. If diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py index 9db613b78..2537bea32 100644 --- a/numpy/polynomial/chebyshev.py +++ b/numpy/polynomial/chebyshev.py @@ -1617,14 +1617,11 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None): y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. - deg : int or array_like - Degree of the fitting series. If `deg` is a single integer - all terms up to and including the `deg`'th term are included. - `deg` may alternatively be a list or array specifying which - terms in the Legendre expansion to include in the fit. - - .. versionchanged:: 1.11.0 - `deg` may be a list specifying which terms to fit + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For Numpy versions >= 1.11 a list of integers specifying the + degrees of the terms to include may be used instead. rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The @@ -1718,11 +1715,11 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None): """ x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 - deg = np.asarray([deg,], dtype=int).flatten() + deg = np.asarray(deg) # check arguments. - if deg.size < 1: - raise TypeError("expected deg to be one or more integers") + if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int or non-empty 1-D array of int") if deg.min() < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: @@ -1734,19 +1731,17 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None): if len(x) != len(y): raise TypeError("expected x and y to have same length") - if deg.size == 1: - restricted_fit = False - lmax = deg[0] + if deg.ndim == 0: + lmax = deg order = lmax + 1 + van = chebvander(x, lmax) else: - restricted_fit = True - lmax = deg.max() - order = deg.size + deg = np.sort(deg) + lmax = deg[-1] + order = len(deg) + van = chebvander(x, lmax)[:, deg] # set up the least squares matrices in transposed form - van = chebvander(x, lmax) - if restricted_fit: - van = van[:, deg] lhs = van.T rhs = y.T if w is not None: @@ -1776,11 +1771,11 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None): c = (c.T/scl).T # Expand c to include non-fitted coefficients which are set to zero - if restricted_fit: + if deg.ndim > 0: if c.ndim == 2: - cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype) + cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype) else: - cc = np.zeros(lmax+1, dtype=c.dtype) + cc = np.zeros(lmax + 1, dtype=c.dtype) cc[deg] = c c = cc diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py index 5d4b357fe..e234c8e23 100644 --- a/numpy/polynomial/hermite.py +++ b/numpy/polynomial/hermite.py @@ -1388,14 +1388,11 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. - deg : int or array_like - Degree of the fitting polynomial. If `deg` is a single integer - all terms up to and including the `deg`'th term are included. - `deg` may alternatively be a list or array specifying which - terms in the Legendre expansion to include in the fit. - - .. versionchanged:: 1.11.0 - `deg` may be a list specifying which terms to fit + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For Numpy versions >= 1.11 a list of integers specifying the + degrees of the terms to include may be used instead. rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The @@ -1494,11 +1491,11 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): """ x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 - deg = np.asarray([deg,], dtype=int).flatten() + deg = np.asarray(deg) # check arguments. - if deg.size < 1: - raise TypeError("expected deg to be one or more integers") + if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int or non-empty 1-D array of int") if deg.min() < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: @@ -1510,19 +1507,17 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): if len(x) != len(y): raise TypeError("expected x and y to have same length") - if deg.size == 1: - restricted_fit = False - lmax = deg[0] + if deg.ndim == 0: + lmax = deg order = lmax + 1 + van = hermvander(x, lmax) else: - restricted_fit = True - lmax = deg.max() - order = deg.size + deg = np.sort(deg) + lmax = deg[-1] + order = len(deg) + van = hermvander(x, lmax)[:, deg] # set up the least squares matrices in transposed form - van = hermvander(x, lmax) - if restricted_fit: - van = van[:, deg] lhs = van.T rhs = y.T if w is not None: @@ -1552,7 +1547,7 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): c = (c.T/scl).T # Expand c to include non-fitted coefficients which are set to zero - if restricted_fit: + if deg.ndim > 0: if c.ndim == 2: cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype) else: diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py index da441af83..08e83899a 100644 --- a/numpy/polynomial/hermite_e.py +++ b/numpy/polynomial/hermite_e.py @@ -1385,14 +1385,11 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. - deg : int or array_like - Degree of the fitting polynomial. If `deg` is a single integer - all terms up to and including the `deg`'th term are included. - `deg` may alternatively be a list or array specifying which - terms in the Legendre expansion to include in the fit. - - .. versionchanged:: 1.11.0 - `deg` may be a list specifying which terms to fit + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For Numpy versions >= 1.11 a list of integers specifying the + degrees of the terms to include may be used instead. rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The @@ -1491,11 +1488,11 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): """ x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 - deg = np.asarray([deg,], dtype=int).flatten() + deg = np.asarray(deg) # check arguments. - if deg.size < 1: - raise TypeError("expected deg to be one or more integers") + if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int or non-empty 1-D array of int") if deg.min() < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: @@ -1507,19 +1504,17 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): if len(x) != len(y): raise TypeError("expected x and y to have same length") - if deg.size == 1: - restricted_fit = False - lmax = deg[0] + if deg.ndim == 0: + lmax = deg order = lmax + 1 + van = hermevander(x, lmax) else: - restricted_fit = True - lmax = deg.max() - order = deg.size + deg = np.sort(deg) + lmax = deg[-1] + order = len(deg) + van = hermevander(x, lmax)[:, deg] # set up the least squares matrices in transposed form - van = hermevander(x, lmax) - if restricted_fit: - van = van[:, deg] lhs = van.T rhs = y.T if w is not None: @@ -1549,7 +1544,7 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): c = (c.T/scl).T # Expand c to include non-fitted coefficients which are set to zero - if restricted_fit: + if deg.ndim > 0: if c.ndim == 2: cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype) else: diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py index 280e28159..d459551ae 100644 --- a/numpy/polynomial/laguerre.py +++ b/numpy/polynomial/laguerre.py @@ -1387,14 +1387,11 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. - deg : int or array_like - Degree of the fitting polynomial. If `deg` is a single integer - all terms up to and including the `deg`'th term are included. - `deg` may alternatively be a list or array specifying which - terms in the Legendre expansion to include in the fit. - - .. versionchanged:: 1.11.0 - `deg` may be a list specifying which terms to fit + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For Numpy versions >= 1.11 a list of integers specifying the + degrees of the terms to include may be used instead. rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The @@ -1493,11 +1490,11 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): """ x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 - deg = np.asarray([deg,], dtype=int).flatten() + deg = np.asarray(deg) # check arguments. - if deg.size < 1: - raise TypeError("expected deg to be one or more integers") + if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int or non-empty 1-D array of int") if deg.min() < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: @@ -1509,19 +1506,17 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): if len(x) != len(y): raise TypeError("expected x and y to have same length") - if deg.size == 1: - restricted_fit = False - lmax = deg[0] + if deg.ndim == 0: + lmax = deg order = lmax + 1 + van = lagvander(x, lmax) else: - restricted_fit = True - lmax = deg.max() - order = deg.size + deg = np.sort(deg) + lmax = deg[-1] + order = len(deg) + van = lagvander(x, lmax)[:, deg] # set up the least squares matrices in transposed form - van = lagvander(x, lmax) - if restricted_fit: - van = van[:, deg] lhs = van.T rhs = y.T if w is not None: @@ -1551,7 +1546,7 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): c = (c.T/scl).T # Expand c to include non-fitted coefficients which are set to zero - if restricted_fit: + if deg.ndim > 0: if c.ndim == 2: cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype) else: diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py index 2035ba6e9..54e9895db 100644 --- a/numpy/polynomial/legendre.py +++ b/numpy/polynomial/legendre.py @@ -1418,14 +1418,11 @@ def legfit(x, y, deg, rcond=None, full=False, w=None): y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. - deg : int or array_like - Degree of the fitting polynomial. If `deg` is a single integer - all terms up to and including the `deg`'th term are included. - `deg` may alternatively be a list or array specifying which - terms in the Legendre expansion to include in the fit. - - .. versionchanged:: 1.11.0 - `deg` may be a list specifying which terms to fit + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For Numpy versions >= 1.11 a list of integers specifying the + degrees of the terms to include may be used instead. rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The @@ -1521,11 +1518,11 @@ def legfit(x, y, deg, rcond=None, full=False, w=None): """ x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 - deg = np.asarray([deg,], dtype=int).flatten() + deg = np.asarray(deg) # check arguments. - if deg.size < 1: - raise TypeError("expected deg to be one or more integers") + if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int or non-empty 1-D array of int") if deg.min() < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: @@ -1537,19 +1534,17 @@ def legfit(x, y, deg, rcond=None, full=False, w=None): if len(x) != len(y): raise TypeError("expected x and y to have same length") - if deg.size == 1: - restricted_fit = False - lmax = deg[0] + if deg.ndim == 0: + lmax = deg order = lmax + 1 + van = legvander(x, lmax) else: - restricted_fit = True - lmax = deg.max() - order = deg.size + deg = np.sort(deg) + lmax = deg[-1] + order = len(deg) + van = legvander(x, lmax)[:, deg] # set up the least squares matrices in transposed form - van = legvander(x, lmax) - if restricted_fit: - van = van[:, deg] lhs = van.T rhs = y.T if w is not None: @@ -1579,7 +1574,7 @@ def legfit(x, y, deg, rcond=None, full=False, w=None): c = (c.T/scl).T # Expand c to include non-fitted coefficients which are set to zero - if restricted_fit: + if deg.ndim > 0: if c.ndim == 2: cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype) else: diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py index 7c922c11b..5d05f5991 100644 --- a/numpy/polynomial/polynomial.py +++ b/numpy/polynomial/polynomial.py @@ -1217,14 +1217,11 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): sharing the same x-coordinates can be (independently) fit with one call to `polyfit` by passing in for `y` a 2-D array that contains one data set per column. - deg : int or array_like - Degree of the fitting polynomial. If `deg` is a single integer - all terms up to and including the `deg`'th term are included. - `deg` may alternatively be a list or array specifying which - terms in the Legendre expansion to include in the fit. - - .. versionchanged:: 1.11.0 - `deg` may be a list specifying which terms to fit + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For Numpy versions >= 1.11 a list of integers specifying the + degrees of the terms to include may be used instead. rcond : float, optional Relative condition number of the fit. Singular values smaller than `rcond`, relative to the largest singular value, will be @@ -1340,11 +1337,11 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): """ x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 - deg = np.asarray([deg,], dtype=int).flatten() + deg = np.asarray(deg) # check arguments. - if deg.size < 1: - raise TypeError("expected deg to be one or more integers") + if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int or non-empty 1-D array of int") if deg.min() < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: @@ -1356,19 +1353,17 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): if len(x) != len(y): raise TypeError("expected x and y to have same length") - if deg.size == 1: - restricted_fit = False - lmax = deg[0] + if deg.ndim == 0: + lmax = deg order = lmax + 1 + van = polyvander(x, lmax) else: - restricted_fit = True - lmax = deg.max() - order = deg.size + deg = np.sort(deg) + lmax = deg[-1] + order = len(deg) + van = polyvander(x, lmax)[:, deg] # set up the least squares matrices in transposed form - van = polyvander(x, lmax) - if restricted_fit: - van = van[:, deg] lhs = van.T rhs = y.T if w is not None: @@ -1398,11 +1393,11 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): c = (c.T/scl).T # Expand c to include non-fitted coefficients which are set to zero - if restricted_fit: + if deg.ndim == 1: if c.ndim == 2: - cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype) + cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype) else: - cc = np.zeros(lmax+1, dtype=c.dtype) + cc = np.zeros(lmax + 1, dtype=c.dtype) cc[deg] = c c = cc |