summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2011-05-10 08:04:54 -0600
committerCharles Harris <charlesr.harris@gmail.com>2011-05-10 08:11:47 -0600
commit5c4efaac91413ef14a558098197f1e85d19309ef (patch)
tree6db82109ee22217339498d2096c6c659078615ea
parenteab959b407e39ef7b35b1f0a90609e462d8527e7 (diff)
downloadnumpy-5c4efaac91413ef14a558098197f1e85d19309ef.tar.gz
STY: Cleanup test_linalg a bit.
-rw-r--r--numpy/linalg/tests/test_linalg.py64
1 files changed, 42 insertions, 22 deletions
diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py
index 1f135fd4b..3e832b62f 100644
--- a/numpy/linalg/tests/test_linalg.py
+++ b/numpy/linalg/tests/test_linalg.py
@@ -22,6 +22,7 @@ def assert_almost_equal(a, b, **kw):
decimal = 12
old_assert_almost_equal(a, b, decimal=decimal, **kw)
+
class LinalgTestCase(object):
def test_single(self):
a = array([[1.,2.], [3.,4.]], dtype=single)
@@ -138,24 +139,28 @@ class TestSolve(LinalgTestCase, TestCase):
assert_almost_equal(b, dot(a, x))
assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
+
class TestInv(LinalgTestCase, TestCase):
def do(self, a, b):
a_inv = linalg.inv(a)
assert_almost_equal(dot(a, a_inv), identity(asarray(a).shape[0]))
assert_(imply(isinstance(a, matrix), isinstance(a_inv, matrix)))
+
class TestEigvals(LinalgTestCase, TestCase):
def do(self, a, b):
ev = linalg.eigvals(a)
evalues, evectors = linalg.eig(a)
assert_almost_equal(ev, evalues)
+
class TestEig(LinalgTestCase, TestCase):
def do(self, a, b):
evalues, evectors = linalg.eig(a)
assert_almost_equal(dot(a, evectors), multiply(evectors, evalues))
assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix)))
+
class TestSVD(LinalgTestCase, TestCase):
def do(self, a, b):
u, s, vt = linalg.svd(a, 0)
@@ -163,29 +168,34 @@ class TestSVD(LinalgTestCase, TestCase):
assert_(imply(isinstance(a, matrix), isinstance(u, matrix)))
assert_(imply(isinstance(a, matrix), isinstance(vt, matrix)))
+
class TestCondSVD(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
old_assert_almost_equal(s[0]/s[-1], linalg.cond(a), decimal=5)
+
class TestCond2(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5)
+
class TestCondInf(TestCase):
def test(self):
A = array([[1.,0,0],[0,-2.,0],[0,0,3.]])
assert_almost_equal(linalg.cond(A,inf),3.)
+
class TestPinv(LinalgTestCase, TestCase):
def do(self, a, b):
a_ginv = linalg.pinv(a)
assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0]))
assert_(imply(isinstance(a, matrix), isinstance(a_ginv, matrix)))
+
class TestDet(LinalgTestCase, TestCase):
def do(self, a, b):
d = linalg.det(a)
@@ -215,6 +225,7 @@ class TestDet(LinalgTestCase, TestCase):
assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
+
class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase, TestCase):
def do(self, a, b):
arr = np.asarray(a)
@@ -240,6 +251,7 @@ class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase, TestCase):
assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
+
class TestMatrixPower(object):
R90 = array([[0,1],[-1,0]])
Arb22 = array([[4,-7],[-2,10]])
@@ -293,6 +305,7 @@ class TestMatrixPower(object):
assert_raises(numpy.linalg.linalg.LinAlgError,
lambda: matrix_power(self.noninv,-1))
+
class TestBoolPower(TestCase):
def test_square(self):
A = array([[True,False],[True,True]])
@@ -334,6 +347,7 @@ class HermitianTestCase(object):
a = matrix([[1.,2.], [2.,1.]])
self.do(a)
+
class TestEigvalsh(HermitianTestCase, TestCase):
def do(self, a):
# note that eigenvalue arrays must be sorted since
@@ -344,6 +358,7 @@ class TestEigvalsh(HermitianTestCase, TestCase):
evalues.sort()
assert_almost_equal(ev, evalues)
+
class TestEigh(HermitianTestCase, TestCase):
def do(self, a):
# note that eigenvalue arrays must be sorted since
@@ -354,6 +369,7 @@ class TestEigh(HermitianTestCase, TestCase):
evalues.sort()
assert_almost_equal(ev, evalues)
+
class _TestNorm(TestCase):
dt = None
dec = None
@@ -403,37 +419,41 @@ class _TestNorm(TestCase):
self.assertRaises(ValueError, norm, A, -3)
self.assertRaises(ValueError, norm, A, 0)
+
class TestNormDouble(_TestNorm):
dt = np.double
dec= 12
+
class TestNormSingle(_TestNorm):
dt = np.float32
dec = 6
-def test_matrix_rank():
- # Full rank matrix
- yield assert_equal, 4, matrix_rank(np.eye(4))
- # rank deficient matrix
- I=np.eye(4); I[-1,-1] = 0.
- yield assert_equal, matrix_rank(I), 3
- # All zeros - zero rank
- yield assert_equal, matrix_rank(np.zeros((4,4))), 0
- # 1 dimension - rank 1 unless all 0
- yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
- yield assert_equal, matrix_rank(np.zeros((4,))), 0
- # accepts array-like
- yield assert_equal, matrix_rank([1]), 1
- # greater than 2 dimensions raises error
- yield assert_raises, TypeError, matrix_rank, np.zeros((2,2,2))
- # works on scalar
- yield assert_equal, matrix_rank(1), 1
-
-@raises(linalg.LinAlgError)
-def test_qr_empty():
- a = np.zeros((0,2))
- linalg.qr(a)
+class TestMatrixRank(object):
+ def test_matrix_rank(self):
+ # Full rank matrix
+ yield assert_equal, 4, matrix_rank(np.eye(4))
+ # rank deficient matrix
+ I=np.eye(4); I[-1,-1] = 0.
+ yield assert_equal, matrix_rank(I), 3
+ # All zeros - zero rank
+ yield assert_equal, matrix_rank(np.zeros((4,4))), 0
+ # 1 dimension - rank 1 unless all 0
+ yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
+ yield assert_equal, matrix_rank(np.zeros((4,))), 0
+ # accepts array-like
+ yield assert_equal, matrix_rank([1]), 1
+ # greater than 2 dimensions raises error
+ yield assert_raises, TypeError, matrix_rank, np.zeros((2,2,2))
+ # works on scalar
+ yield assert_equal, matrix_rank(1), 1
+
+
+class TestQR(TestCase):
+ def test_qr_empty(self):
+ a = np.zeros((0,2))
+ self.assertRaises(linalg.LinAlgError, linalg.qr, a)
if __name__ == "__main__":