summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2023-03-26 08:43:14 +0300
committerGitHub <noreply@github.com>2023-03-26 08:43:14 +0300
commitad09c69fafe5d198fab979e66fe1c13f09ed347d (patch)
tree48f48319ee5bde57e0d6e565443b8e43ce148b9d
parent81c76c0b19c6b71c7fdbf48f8d4a00bf5af055ac (diff)
parentf9bbf9bac86c42c079fc8156540fab841128102c (diff)
downloadnumpy-ad09c69fafe5d198fab979e66fe1c13f09ed347d.tar.gz
Merge pull request #23322 from F3eQnxN3RriK/enh-ma-dot
ENH: Add support to `ma.dot()` for non-2d arrays with `strict=True`
-rw-r--r--doc/release/upcoming_changes/23322.improvement.rst4
-rw-r--r--numpy/ma/core.py112
-rw-r--r--numpy/ma/extras.py92
-rw-r--r--numpy/ma/tests/test_extras.py41
4 files changed, 153 insertions, 96 deletions
diff --git a/doc/release/upcoming_changes/23322.improvement.rst b/doc/release/upcoming_changes/23322.improvement.rst
new file mode 100644
index 000000000..ce5ab8cf5
--- /dev/null
+++ b/doc/release/upcoming_changes/23322.improvement.rst
@@ -0,0 +1,4 @@
+`np.ma.dot()` now supports for non-2d arrays
+--------------------------------------------
+Previously `np.ma.dot()` only worked if `a` and `b` were both 2d.
+Now it works for non-2d arrays as well as `np.dot()`.
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index fcc321a73..dcec82773 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -7110,7 +7110,7 @@ def diag(v, k=0):
Examples
--------
-
+
Create an array with negative values masked:
>>> import numpy as np
@@ -7521,7 +7521,7 @@ def diff(a, /, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue):
if len(combined) > 1:
a = np.ma.concatenate(combined, axis)
- # GH 22465 np.diff without prepend/append preserves the mask
+ # GH 22465 np.diff without prepend/append preserves the mask
return np.diff(a, n, axis)
@@ -7752,94 +7752,18 @@ def round_(a, decimals=0, out=None):
round = round_
-# Needed by dot, so move here from extras.py. It will still be exported
-# from extras.py for compatibility.
-def mask_rowcols(a, axis=None):
+def _mask_propagate(a, axis):
"""
- Mask rows and/or columns of a 2D array that contain masked values.
-
- Mask whole rows and/or columns of a 2D array that contain
- masked values. The masking behavior is selected using the
- `axis` parameter.
-
- - If `axis` is None, rows *and* columns are masked.
- - If `axis` is 0, only rows are masked.
- - If `axis` is 1 or -1, only columns are masked.
-
- Parameters
- ----------
- a : array_like, MaskedArray
- The array to mask. If not a MaskedArray instance (or if no array
- elements are masked). The result is a MaskedArray with `mask` set
- to `nomask` (False). Must be a 2D array.
- axis : int, optional
- Axis along which to perform the operation. If None, applies to a
- flattened version of the array.
-
- Returns
- -------
- a : MaskedArray
- A modified version of the input array, masked depending on the value
- of the `axis` parameter.
-
- Raises
- ------
- NotImplementedError
- If input array `a` is not 2D.
-
- See Also
- --------
- mask_rows : Mask rows of a 2D array that contain masked values.
- mask_cols : Mask cols of a 2D array that contain masked values.
- masked_where : Mask where a condition is met.
-
- Notes
- -----
- The input array's mask is modified by this function.
-
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.zeros((3, 3), dtype=int)
- >>> a[1, 1] = 1
- >>> a
- array([[0, 0, 0],
- [0, 1, 0],
- [0, 0, 0]])
- >>> a = ma.masked_equal(a, 1)
- >>> a
- masked_array(
- data=[[0, 0, 0],
- [0, --, 0],
- [0, 0, 0]],
- mask=[[False, False, False],
- [False, True, False],
- [False, False, False]],
- fill_value=1)
- >>> ma.mask_rowcols(a)
- masked_array(
- data=[[0, --, 0],
- [--, --, --],
- [0, --, 0]],
- mask=[[False, True, False],
- [ True, True, True],
- [False, True, False]],
- fill_value=1)
-
+ Mask whole 1-d vectors of an array that contain masked values.
"""
a = array(a, subok=False)
- if a.ndim != 2:
- raise NotImplementedError("mask_rowcols works for 2D arrays only.")
m = getmask(a)
- # Nothing is masked: return a
- if m is nomask or not m.any():
+ if m is nomask or not m.any() or axis is None:
return a
- maskedval = m.nonzero()
a._mask = a._mask.copy()
- if not axis:
- a[np.unique(maskedval[0])] = masked
- if axis in [None, 1, -1]:
- a[:, np.unique(maskedval[1])] = masked
+ axes = normalize_axis_tuple(axis, a.ndim)
+ for ax in axes:
+ a._mask |= m.any(axis=ax, keepdims=True)
return a
@@ -7856,10 +7780,6 @@ def dot(a, b, strict=False, out=None):
corresponding method, it is recommended that the optional arguments be
treated as keyword only. At some point that may be mandatory.
- .. note::
- Works only with 2-D arrays at the moment.
-
-
Parameters
----------
a, b : masked_array_like
@@ -7903,18 +7823,22 @@ def dot(a, b, strict=False, out=None):
fill_value=999999)
"""
- # !!!: Works only with 2D arrays. There should be a way to get it to run
- # with higher dimension
- if strict and (a.ndim == 2) and (b.ndim == 2):
- a = mask_rowcols(a, 0)
- b = mask_rowcols(b, 1)
+ if strict is True:
+ if np.ndim(a) == 0 or np.ndim(b) == 0:
+ pass
+ elif b.ndim == 1:
+ a = _mask_propagate(a, a.ndim - 1)
+ b = _mask_propagate(b, b.ndim - 1)
+ else:
+ a = _mask_propagate(a, a.ndim - 1)
+ b = _mask_propagate(b, b.ndim - 2)
am = ~getmaskarray(a)
bm = ~getmaskarray(b)
if out is None:
d = np.dot(filled(a, 0), filled(b, 0))
m = ~np.dot(am, bm)
- if d.ndim == 0:
+ if np.ndim(d) == 0:
d = np.asarray(d)
r = d.view(get_masked_subclass(a, b))
r.__setmask__(m)
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 4abe2107a..8a6246c36 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -27,8 +27,7 @@ from . import core as ma
from .core import (
MaskedArray, MAError, add, array, asarray, concatenate, filled, count,
getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or,
- nomask, ones, sort, zeros, getdata, get_masked_subclass, dot,
- mask_rowcols
+ nomask, ones, sort, zeros, getdata, get_masked_subclass, dot
)
import numpy as np
@@ -955,6 +954,95 @@ def compress_cols(a):
return compress_rowcols(a, 1)
+def mask_rowcols(a, axis=None):
+ """
+ Mask rows and/or columns of a 2D array that contain masked values.
+
+ Mask whole rows and/or columns of a 2D array that contain
+ masked values. The masking behavior is selected using the
+ `axis` parameter.
+
+ - If `axis` is None, rows *and* columns are masked.
+ - If `axis` is 0, only rows are masked.
+ - If `axis` is 1 or -1, only columns are masked.
+
+ Parameters
+ ----------
+ a : array_like, MaskedArray
+ The array to mask. If not a MaskedArray instance (or if no array
+ elements are masked), the result is a MaskedArray with `mask` set
+ to `nomask` (False). Must be a 2D array.
+ axis : int, optional
+ Axis along which to perform the operation. If None, applies to a
+ flattened version of the array.
+
+ Returns
+ -------
+ a : MaskedArray
+ A modified version of the input array, masked depending on the value
+ of the `axis` parameter.
+
+ Raises
+ ------
+ NotImplementedError
+ If input array `a` is not 2D.
+
+ See Also
+ --------
+ mask_rows : Mask rows of a 2D array that contain masked values.
+ mask_cols : Mask cols of a 2D array that contain masked values.
+ masked_where : Mask where a condition is met.
+
+ Notes
+ -----
+ The input array's mask is modified by this function.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.zeros((3, 3), dtype=int)
+ >>> a[1, 1] = 1
+ >>> a
+ array([[0, 0, 0],
+ [0, 1, 0],
+ [0, 0, 0]])
+ >>> a = ma.masked_equal(a, 1)
+ >>> a
+ masked_array(
+ data=[[0, 0, 0],
+ [0, --, 0],
+ [0, 0, 0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1)
+ >>> ma.mask_rowcols(a)
+ masked_array(
+ data=[[0, --, 0],
+ [--, --, --],
+ [0, --, 0]],
+ mask=[[False, True, False],
+ [ True, True, True],
+ [False, True, False]],
+ fill_value=1)
+
+ """
+ a = array(a, subok=False)
+ if a.ndim != 2:
+ raise NotImplementedError("mask_rowcols works for 2D arrays only.")
+ m = getmask(a)
+ # Nothing is masked: return a
+ if m is nomask or not m.any():
+ return a
+ maskedval = m.nonzero()
+ a._mask = a._mask.copy()
+ if not axis:
+ a[np.unique(maskedval[0])] = masked
+ if axis in [None, 1, -1]:
+ a[:, np.unique(maskedval[1])] = masked
+ return a
+
+
def mask_rows(a, axis=np._NoValue):
"""
Mask rows of a 2D array that contain masked values.
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
index e59ba3656..d09a50fec 100644
--- a/numpy/ma/tests/test_extras.py
+++ b/numpy/ma/tests/test_extras.py
@@ -730,6 +730,47 @@ class TestCompressFunctions:
assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
c = dot(b, a, strict=False)
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ b = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]])
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask,
+ [[[[1, 1], [1, 1]], [[0, 0], [0, 1]]],
+ [[[0, 0], [0, 1]], [[0, 0], [0, 1]]]])
+ c = dot(a, b, strict=False)
+ assert_equal(c.mask,
+ [[[[0, 0], [0, 1]], [[0, 0], [0, 0]]],
+ [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]])
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask,
+ [[[[1, 0], [0, 0]], [[1, 0], [0, 0]]],
+ [[[1, 0], [0, 0]], [[1, 1], [1, 1]]]])
+ c = dot(b, a, strict=False)
+ assert_equal(c.mask,
+ [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]],
+ [[[0, 0], [0, 0]], [[1, 0], [0, 0]]]])
+ #
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ b = 5.
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ c = dot(a, b, strict=False)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ c = dot(b, a, strict=False)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ #
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ b = masked_array(np.arange(2), mask=[0, 1])
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[1, 1], [1, 1]])
+ c = dot(a, b, strict=False)
+ assert_equal(c.mask, [[1, 0], [0, 0]])
def test_dot_returns_maskedarray(self):
# See gh-6611