summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKevin Sheppard <kevin.k.sheppard@gmail.com>2019-03-31 08:14:58 +0100
committerKevin Sheppard <kevin.k.sheppard@gmail.com>2019-03-31 08:16:48 +0100
commitad885aedf8c9da9e52be08d1ab9b6b8dfa0f5667 (patch)
treeee34221ac493f9a9c96b279e5a38eaeefb6ce681
parentb30b8e24beacd6263f5978eb96733d57af536e89 (diff)
downloadnumpy-ad885aedf8c9da9e52be08d1ab9b6b8dfa0f5667.tar.gz
DOC: Fix small issues in mtrand doc strings
Remove overly long underscore Remove trailing whitespace
-rw-r--r--numpy/random/mtrand/mtrand.pyx24
1 files changed, 12 insertions, 12 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index 2426dbaa4..f49299f55 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -992,7 +992,7 @@ cdef class RandomState:
raise ValueError("high is out of bounds for %s" % dtype)
if ilow >= ihigh and np.prod(size) != 0:
raise ValueError("Range cannot be empty (low >= high) unless no samples are taken")
-
+
with self.lock:
ret = randfunc(ilow, ihigh - 1, size, self.state_address)
@@ -1040,7 +1040,7 @@ cdef class RandomState:
.. versionadded:: 1.7.0
Parameters
- -----------
+ ----------
a : 1-D array-like or int
If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a were np.arange(a)
@@ -4706,7 +4706,7 @@ cdef class RandomState:
Draw `size` samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
generalization of a Beta distribution. The Dirichlet distribution
- is a conjugate prior of a multinomial distribution in Bayesian
+ is a conjugate prior of a multinomial distribution in Bayesian
inference.
Parameters
@@ -4732,22 +4732,22 @@ cdef class RandomState:
Notes
-----
- The Dirichlet distribution is a distribution over vectors
- :math:`x` that fulfil the conditions :math:`x_i>0` and
+ The Dirichlet distribution is a distribution over vectors
+ :math:`x` that fulfil the conditions :math:`x_i>0` and
:math:`\\sum_{i=1}^k x_i = 1`.
- The probability density function :math:`p` of a
- Dirichlet-distributed random vector :math:`X` is
+ The probability density function :math:`p` of a
+ Dirichlet-distributed random vector :math:`X` is
proportional to
.. math:: p(x) \\propto \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i},
- where :math:`\\alpha` is a vector containing the positive
+ where :math:`\\alpha` is a vector containing the positive
concentration parameters.
The method uses the following property for computation: let :math:`Y`
- be a random vector which has components that follow a standard gamma
- distribution, then :math:`X = \\frac{1}{\\sum_{i=1}^k{Y_i}} Y`
+ be a random vector which has components that follow a standard gamma
+ distribution, then :math:`X = \\frac{1}{\\sum_{i=1}^k{Y_i}} Y`
is Dirichlet-distributed
References
@@ -4962,7 +4962,7 @@ cdef class RandomState:
return arr
arr = np.asarray(x)
-
+
# shuffle has fast-path for 1-d
if arr.ndim == 1:
# Return a copy if same memory
@@ -4975,7 +4975,7 @@ cdef class RandomState:
idx = np.arange(arr.shape[0], dtype=np.intp)
self.shuffle(idx)
return arr[idx]
-
+
_rand = RandomState()
seed = _rand.seed