summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2017-02-09 19:58:15 -0700
committerGitHub <noreply@github.com>2017-02-09 19:58:15 -0700
commitb52be49a702862a44f18237c5a9a6c7f5173ddab (patch)
tree33283a7a9ef8d0261dd8ca41dc0dcba20902ff94
parent04bfa6233473e3ffb7fb3fe2e9c1623d63f62cad (diff)
parent40ce834f854827b39c98a6e32d061195edad6662 (diff)
downloadnumpy-b52be49a702862a44f18237c5a9a6c7f5173ddab.tar.gz
Merge pull request #8575 from godaygo/doc-typos-1
DOC: fix several typos #8537.
-rw-r--r--doc/source/reference/arrays.scalars.rst15
-rw-r--r--doc/source/user/quickstart.rst27
-rw-r--r--numpy/doc/indexing.py4
3 files changed, 26 insertions, 20 deletions
diff --git a/doc/source/reference/arrays.scalars.rst b/doc/source/reference/arrays.scalars.rst
index 4acaf1b3b..f76087ce2 100644
--- a/doc/source/reference/arrays.scalars.rst
+++ b/doc/source/reference/arrays.scalars.rst
@@ -248,7 +248,8 @@ Indexing
Array scalars can be indexed like 0-dimensional arrays: if *x* is an
array scalar,
-- ``x[()]`` returns a 0-dimensional :class:`ndarray`
+- ``x[()]`` returns a copy of array scalar
+- ``x[...]`` returns a 0-dimensional :class:`ndarray`
- ``x['field-name']`` returns the array scalar in the field *field-name*.
(*x* can have fields, for example, when it corresponds to a structured data type.)
@@ -282,10 +283,10 @@ Defining new types
==================
There are two ways to effectively define a new array scalar type
-(apart from composing structured types :ref:`dtypes <arrays.dtypes>` from
-the built-in scalar types): One way is to simply subclass the
-:class:`ndarray` and overwrite the methods of interest. This will work to
-a degree, but internally certain behaviors are fixed by the data type of
-the array. To fully customize the data type of an array you need to
-define a new data-type, and register it with NumPy. Such new types can only
+(apart from composing structured types :ref:`dtypes <arrays.dtypes>` from
+the built-in scalar types): One way is to simply subclass the
+:class:`ndarray` and overwrite the methods of interest. This will work to
+a degree, but internally certain behaviors are fixed by the data type of
+the array. To fully customize the data type of an array you need to
+define a new data-type, and register it with NumPy. Such new types can only
be defined in C, using the :ref:`NumPy C-API <c-api>`.
diff --git a/doc/source/user/quickstart.rst b/doc/source/user/quickstart.rst
index 65840c724..f69eb3ace 100644
--- a/doc/source/user/quickstart.rst
+++ b/doc/source/user/quickstart.rst
@@ -713,27 +713,32 @@ Several arrays can be stacked together along different axes::
The function `column_stack`
stacks 1D arrays as columns into a 2D array. It is equivalent to
-`vstack` only for 1D arrays::
+`hstack` only for 2D arrays::
>>> from numpy import newaxis
- >>> np.column_stack((a,b)) # With 2D arrays
+ >>> np.column_stack((a,b)) # with 2D arrays
array([[ 8., 8., 1., 8.],
[ 0., 0., 0., 4.]])
>>> a = np.array([4.,2.])
- >>> b = np.array([2.,8.])
- >>> a[:,newaxis] # This allows to have a 2D columns vector
+ >>> b = np.array([3.,8.])
+ >>> np.column_stack((a,b)) # returns a 2D array
+ array([[ 4., 3.],
+ [ 2., 8.]])
+ >>> np.hstack((a,b)) # the result is different
+ array([ 4., 2., 3., 8.])
+ >>> a[:,newaxis] # this allows to have a 2D columns vector
array([[ 4.],
[ 2.]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
- array([[ 4., 2.],
+ array([[ 4., 3.],
+ [ 2., 8.]])
+ >>> np.hstack((a[:,newaxis],b[:,newaxis])) # the result is the same
+ array([[ 4., 3.],
[ 2., 8.]])
- >>> np.vstack((a[:,newaxis],b[:,newaxis])) # The behavior of vstack is different
- array([[ 4.],
- [ 2.],
- [ 2.],
- [ 8.]])
-For arrays of with more than two dimensions,
+On the other hand, the function `row_stack` is equivalent to `vstack`
+for any input arrays.
+In general, for arrays of with more than two dimensions,
`hstack` stacks along their second
axes, `vstack` stacks along their
first axes, and `concatenate`
diff --git a/numpy/doc/indexing.py b/numpy/doc/indexing.py
index 3e3e95641..39b2c73ed 100644
--- a/numpy/doc/indexing.py
+++ b/numpy/doc/indexing.py
@@ -200,8 +200,8 @@ one index array with y: ::
What results is the construction of a new array where each value of
the index array selects one row from the array being indexed and the
-resultant array has the resulting shape (size of row, number index
-elements).
+resultant array has the resulting shape (number of index elements,
+size of row).
An example of where this may be useful is for a color lookup table
where we want to map the values of an image into RGB triples for