summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatteo Raso <matteo_luigi_raso@protonmail.com>2023-04-01 21:45:16 -0400
committerMatteo Raso <matteo_luigi_raso@protonmail.com>2023-04-01 21:45:16 -0400
commitdfaa72d72453b8738ec711180e03da824651e46b (patch)
tree8e03ad1d58833e63b413d61209e9d4315c74d20a
parent40bb77e8b7ee2db58f306d7f96e9cb6d18bb768f (diff)
downloadnumpy-dfaa72d72453b8738ec711180e03da824651e46b.tar.gz
Fixed edge case where pyfunc has no attribute `__name__`
-rw-r--r--numpy/lib/function_base.py105
-rw-r--r--numpy/lib/tests/test_function_base.py80
2 files changed, 134 insertions, 51 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index f0f374f97..b9f0d58d2 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -24,7 +24,7 @@ from numpy.core import overrides
from numpy.core.function_base import add_newdoc
from numpy.lib.twodim_base import diag
from numpy.core.multiarray import (
- _place, add_docstring, bincount, normalize_axis_index, _monotonicity,
+ _insert, add_docstring, bincount, normalize_axis_index, _monotonicity,
interp as compiled_interp, interp_complex as compiled_interp_complex
)
from numpy.core.umath import _add_newdoc_ufunc as add_newdoc_ufunc
@@ -1311,8 +1311,6 @@ def gradient(f, *varargs, axis=None, edge_order=1):
if len_axes == 1:
return outvals[0]
- elif np._using_numpy2_behavior():
- return tuple(outvals)
else:
return outvals
@@ -1951,7 +1949,11 @@ def place(arr, mask, vals):
[44, 55, 44]])
"""
- return _place(arr, mask, vals)
+ if not isinstance(arr, np.ndarray):
+ raise TypeError("argument 1 must be numpy.ndarray, "
+ "not {name}".format(name=type(arr).__name__))
+
+ return _insert(arr, mask, vals)
def disp(mesg, device=None, linefeed=True):
@@ -2117,10 +2119,10 @@ def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes,
@set_module('numpy')
class vectorize:
"""
- vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False,
- signature=None)
+ vectorize(pyfunc=np._NoValue, otypes=None, doc=None, excluded=None,
+ cache=False, signature=None)
- Generalized function class.
+ Returns an object that acts like pyfunc, but takes arrays as input.
Define a vectorized function which takes a nested sequence of objects or
numpy arrays as inputs and returns a single numpy array or a tuple of numpy
@@ -2134,8 +2136,9 @@ class vectorize:
Parameters
----------
- pyfunc : callable
+ pyfunc : callable, optional
A python function or method.
+ Can be omitted to produce a decorator with keyword arguments.
otypes : str or list of dtypes, optional
The output data type. It must be specified as either a string of
typecode characters or a list of data type specifiers. There should
@@ -2167,8 +2170,9 @@ class vectorize:
Returns
-------
- vectorized : callable
- Vectorized function.
+ out : callable
+ A vectorized function if ``pyfunc`` was provided,
+ a decorator otherwise.
See Also
--------
@@ -2265,18 +2269,44 @@ class vectorize:
[0., 0., 1., 2., 1., 0.],
[0., 0., 0., 1., 2., 1.]])
+ Decorator syntax is supported. The decorator can be called as
+ a function to provide keyword arguments.
+ >>>@np.vectorize
+ ...def identity(x):
+ ... return x
+ ...
+ >>>identity([0, 1, 2])
+ array([0, 1, 2])
+ >>>@np.vectorize(otypes=[float])
+ ...def as_float(x):
+ ... return x
+ ...
+ >>>as_float([0, 1, 2])
+ array([0., 1., 2.])
"""
- def __init__(self, pyfunc, otypes=None, doc=None, excluded=None,
- cache=False, signature=None):
+ def __init__(self, pyfunc=np._NoValue, otypes=None, doc=None,
+ excluded=None, cache=False, signature=None):
+
+ if (pyfunc != np._NoValue) and (not callable(pyfunc)):
+ #Splitting the error message to keep
+ #the length below 79 characters.
+ part1 = "When used as a decorator, "
+ part2 = "only accepts keyword arguments."
+ raise TypeError(part1 + part2)
+
self.pyfunc = pyfunc
self.cache = cache
self.signature = signature
- self._ufunc = {} # Caching to improve default performance
+ if pyfunc != np._NoValue and hasattr(pyfunc, '__name__'):
+ self.__name__ = pyfunc.__name__
+ self._ufunc = {} # Caching to improve default performance
+ self._doc = None
+ self.__doc__ = doc
if doc is None:
self.__doc__ = pyfunc.__doc__
else:
- self.__doc__ = doc
+ self._doc = doc
if isinstance(otypes, str):
for char in otypes:
@@ -2298,7 +2328,15 @@ class vectorize:
else:
self._in_and_out_core_dims = None
- def __call__(self, *args, **kwargs):
+ def _init_stage_2(self, pyfunc, *args, **kwargs):
+ self.__name__ = pyfunc.__name__
+ self.pyfunc = pyfunc
+ if self._doc is None:
+ self.__doc__ = pyfunc.__doc__
+ else:
+ self.__doc__ = self._doc
+
+ def _call_as_normal(self, *args, **kwargs):
"""
Return arrays with the results of `pyfunc` broadcast (vectorized) over
`args` and `kwargs` not in `excluded`.
@@ -2328,6 +2366,13 @@ class vectorize:
return self._vectorize_call(func=func, args=vargs)
+ def __call__(self, *args, **kwargs):
+ if self.pyfunc is np._NoValue:
+ self._init_stage_2(*args, **kwargs)
+ return self
+
+ return self._call_as_normal(*args, **kwargs)
+
def _get_ufunc_and_otypes(self, func, args):
"""Return (ufunc, otypes)."""
# frompyfunc will fail if args is empty
@@ -2693,7 +2738,7 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
if fact <= 0:
warnings.warn("Degrees of freedom <= 0 for slice",
- RuntimeWarning, stacklevel=2)
+ RuntimeWarning, stacklevel=3)
fact = 0.0
X -= avg[:, None]
@@ -2842,7 +2887,7 @@ def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue, *,
if bias is not np._NoValue or ddof is not np._NoValue:
# 2015-03-15, 1.10
warnings.warn('bias and ddof have no effect and are deprecated',
- DeprecationWarning, stacklevel=2)
+ DeprecationWarning, stacklevel=3)
c = cov(x, y, rowvar, dtype=dtype)
try:
d = diag(c)
@@ -3682,7 +3727,7 @@ def msort(a):
warnings.warn(
"msort is deprecated, use np.sort(a, axis=0) instead",
DeprecationWarning,
- stacklevel=2,
+ stacklevel=3,
)
b = array(a, subok=True, copy=True)
b.sort(0)
@@ -4910,24 +4955,6 @@ def trapz(y, x=None, dx=1.0, axis=-1):
return ret
-# __array_function__ has no __code__ or other attributes normal Python funcs we
-# wrap everything into a C callable. SciPy however, tries to "clone" `trapz`
-# into a new Python function which requires `__code__` and a few other
-# attributes. So we create a dummy clone and copy over its attributes allowing
-# SciPy <= 1.10 to work: https://github.com/scipy/scipy/issues/17811
-assert not hasattr(trapz, "__code__")
-
-def _fake_trapz(y, x=None, dx=1.0, axis=-1):
- return trapz(y, x=x, dx=dx, axis=axis)
-
-
-trapz.__code__ = _fake_trapz.__code__
-trapz.__globals__ = _fake_trapz.__globals__
-trapz.__defaults__ = _fake_trapz.__defaults__
-trapz.__closure__ = _fake_trapz.__closure__
-trapz.__kwdefaults__ = _fake_trapz.__kwdefaults__
-
-
def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None):
return xi
@@ -4936,7 +4963,7 @@ def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None):
@array_function_dispatch(_meshgrid_dispatcher)
def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
"""
- Return a list of coordinate matrices from coordinate vectors.
+ Return coordinate matrices from coordinate vectors.
Make N-D coordinate arrays for vectorized evaluations of
N-D scalar/vector fields over N-D grids, given
@@ -4977,7 +5004,7 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
Returns
-------
- X1, X2,..., XN : list of ndarrays
+ X1, X2,..., XN : ndarray
For vectors `x1`, `x2`,..., `xn` with lengths ``Ni=len(xi)``,
returns ``(N1, N2, N3,..., Nn)`` shaped arrays if indexing='ij'
or ``(N2, N1, N3,..., Nn)`` shaped arrays if indexing='xy'
@@ -5414,7 +5441,7 @@ def insert(arr, obj, values, axis=None):
warnings.warn(
"in the future insert will treat boolean arrays and "
"array-likes as a boolean index instead of casting it to "
- "integer", FutureWarning, stacklevel=2)
+ "integer", FutureWarning, stacklevel=3)
indices = indices.astype(intp)
# Code after warning period:
#if obj.ndim != 1:
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 3ec46735c..6f4449c68 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -8,7 +8,7 @@ import pytest
import hypothesis
from hypothesis.extra.numpy import arrays
import hypothesis.strategies as st
-
+from functools import partial
import numpy as np
from numpy import ma
@@ -229,8 +229,8 @@ class TestAny:
def test_nd(self):
y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]]
assert_(np.any(y1))
- assert_array_equal(np.any(y1, axis=0), [1, 1, 0])
- assert_array_equal(np.any(y1, axis=1), [0, 1, 1])
+ assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0])
+ assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1])
class TestAll:
@@ -247,8 +247,8 @@ class TestAll:
def test_nd(self):
y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
assert_(not np.all(y1))
- assert_array_equal(np.all(y1, axis=0), [0, 0, 1])
- assert_array_equal(np.all(y1, axis=1), [0, 0, 1])
+ assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
+ assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
class TestCopy:
@@ -1217,13 +1217,6 @@ class TestGradient:
dfdx = gradient(f, x)
assert_array_equal(dfdx, [0.5, 0.5])
- def test_return_type(self):
- res = np.gradient(([1, 2], [2, 3]))
- if np._using_numpy2_behavior():
- assert type(res) is tuple
- else:
- assert type(res) is list
-
class TestAngle:
@@ -1787,6 +1780,69 @@ class TestVectorize:
assert_equal(type(r), subclass)
assert_equal(r, m * v)
+ def test_name(self):
+ #See gh-23021
+ @np.vectorize
+ def f2(a, b):
+ return a + b
+
+ assert f2.__name__ == 'f2'
+
+ def test_decorator(self):
+ @vectorize
+ def addsubtract(a, b):
+ if a > b:
+ return a - b
+ else:
+ return a + b
+
+ r = addsubtract([0, 3, 6, 9], [1, 3, 5, 7])
+ assert_array_equal(r, [1, 6, 1, 2])
+
+ def test_docstring(self):
+ @vectorize
+ def f(x):
+ """Docstring"""
+ return x
+
+ assert f.__doc__ == "Docstring"
+
+ def test_partial(self):
+ def foo(x, y):
+ return x + y
+
+ bar = partial(foo, 3)
+ vbar = np.vectorize(bar)
+ assert vbar(1) == 4
+
+ def test_signature_otypes_decorator(self):
+ @vectorize(signature='(n)->(n)', otypes=['float64'])
+ def f(x):
+ return x
+
+ r = f([1, 2, 3])
+ assert_equal(r.dtype, np.dtype('float64'))
+ assert_array_equal(r, [1, 2, 3])
+ assert f.__name__ == 'f'
+
+ def test_bad_input(self):
+ with assert_raises(TypeError):
+ A = np.vectorize(pyfunc = 3)
+
+ def test_no_keywords(self):
+ with assert_raises(TypeError):
+ @np.vectorize("string")
+ def foo():
+ return "bar"
+
+ def test_positional_regression_9477(self):
+ # This supplies the first keyword argument as a positional,
+ # to ensure that they are still properly forwarded after the
+ # enhancement for #9477
+ f = vectorize((lambda x: x), ['float64'])
+ r = f([2])
+ assert_equal(r.dtype, np.dtype('float64'))
+
class TestLeaks:
class A: