diff options
| author | Matti Picus <matti.picus@gmail.com> | 2022-12-05 21:31:35 -0500 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2022-12-05 21:31:35 -0500 |
| commit | e877ba95bb3e22238353df0d654ef4d425c42f42 (patch) | |
| tree | d71d4fead240ebd9543efa40acc2fa8d5cba2377 | |
| parent | 65497a4375e66e80339ffc35156a2604221418b0 (diff) | |
| parent | 9cf2cef43f683196242aba6450267049d956b41a (diff) | |
| download | numpy-e877ba95bb3e22238353df0d654ef4d425c42f42.tar.gz | |
Merge pull request #22731 from HaoZeke/maBenchCleanup
BENCH: Update MaskedArray Benchmarks
| -rw-r--r-- | benchmarks/benchmarks/bench_ma.py | 146 | ||||
| -rw-r--r-- | numpy/ma/bench.py | 130 | ||||
| -rw-r--r-- | numpy/tests/test_public_api.py | 1 |
3 files changed, 146 insertions, 131 deletions
diff --git a/benchmarks/benchmarks/bench_ma.py b/benchmarks/benchmarks/bench_ma.py index 0247065a7..49ccf92fe 100644 --- a/benchmarks/benchmarks/bench_ma.py +++ b/benchmarks/benchmarks/bench_ma.py @@ -119,3 +119,149 @@ class Concatenate(Benchmark): def time_it(self, mode, n): np.ma.concatenate(self.args) + + +class MAFunctions1v(Benchmark): + param_names = ['mtype', 'func', 'msize'] + params = [['np', 'np.ma'], + ['sin', 'log', 'sqrt'], + ['small', 'big']] + + def setup(self, mtype, func, msize): + xs = np.random.uniform(-1, 1, 6).reshape(2, 3) + m1 = [[True, False, False], [False, False, True]] + xl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + maskx = xl > 0.8 + self.nmxs = np.ma.array(xs, mask=m1) + self.nmxl = np.ma.array(xl, mask=maskx) + + def time_functions_1v(self, mtype, func, msize): + # fun = {'np.ma.sin': np.ma.sin, 'np.sin': np.sin}[func] + fun = eval(f"{mtype}.{func}") + if msize == 'small': + fun(self.nmxs) + elif msize == 'big': + fun(self.nmxl) + + +class MAMethod0v(Benchmark): + param_names = ['method', 'msize'] + params = [['ravel', 'transpose', 'compressed', 'conjugate'], + ['small', 'big']] + + def setup(self, method, msize): + xs = np.random.uniform(-1, 1, 6).reshape(2, 3) + m1 = [[True, False, False], [False, False, True]] + xl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + maskx = xl > 0.8 + self.nmxs = np.ma.array(xs, mask=m1) + self.nmxl = np.ma.array(xl, mask=maskx) + + def time_methods_0v(self, method, msize): + if msize == 'small': + mdat = self.nmxs + elif msize == 'big': + mdat = self.nmxl + getattr(mdat, method)() + + +class MAFunctions2v(Benchmark): + param_names = ['mtype', 'func', 'msize'] + params = [['np', 'np.ma'], + ['multiply', 'divide', 'power'], + ['small', 'big']] + + def setup(self, mtype, func, msize): + # Small arrays + xs = np.random.uniform(-1, 1, 6).reshape(2, 3) + ys = np.random.uniform(-1, 1, 6).reshape(2, 3) + m1 = [[True, False, False], [False, False, True]] + m2 = [[True, False, True], [False, False, True]] + self.nmxs = np.ma.array(xs, mask=m1) + self.nmys = np.ma.array(ys, mask=m2) + # Big arrays + xl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + yl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + maskx = xl > 0.8 + masky = yl < -0.8 + self.nmxl = np.ma.array(xl, mask=maskx) + self.nmyl = np.ma.array(yl, mask=masky) + + def time_functions_2v(self, mtype, func, msize): + fun = eval(f"{mtype}.{func}") + if msize == 'small': + fun(self.nmxs, self.nmys) + elif msize == 'big': + fun(self.nmxl, self.nmyl) + + +class MAMethodGetItem(Benchmark): + param_names = ['margs', 'msize'] + params = [[0, (0, 0), [0, -1]], + ['small', 'big']] + + def setup(self, margs, msize): + xs = np.random.uniform(-1, 1, 6).reshape(2, 3) + m1 = [[True, False, False], [False, False, True]] + xl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + maskx = xl > 0.8 + self.nmxs = np.ma.array(xs, mask=m1) + self.nmxl = np.ma.array(xl, mask=maskx) + + def time_methods_getitem(self, margs, msize): + if msize == 'small': + mdat = self.nmxs + elif msize == 'big': + mdat = self.nmxl + getattr(mdat, '__getitem__')(margs) + + +class MAMethodSetItem(Benchmark): + param_names = ['margs', 'mset', 'msize'] + params = [[0, (0, 0), (-1, 0)], + [17, np.ma.masked], + ['small', 'big']] + + def setup(self, margs, mset, msize): + xs = np.random.uniform(-1, 1, 6).reshape(2, 3) + m1 = [[True, False, False], [False, False, True]] + xl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + maskx = xl > 0.8 + self.nmxs = np.ma.array(xs, mask=m1) + self.nmxl = np.ma.array(xl, mask=maskx) + + def time_methods_setitem(self, margs, mset, msize): + if msize == 'small': + mdat = self.nmxs + elif msize == 'big': + mdat = self.nmxl + getattr(mdat, '__setitem__')(margs, mset) + + +class Where(Benchmark): + param_names = ['mtype', 'msize'] + params = [['np', 'np.ma'], + ['small', 'big']] + + def setup(self, mtype, msize): + # Small arrays + xs = np.random.uniform(-1, 1, 6).reshape(2, 3) + ys = np.random.uniform(-1, 1, 6).reshape(2, 3) + m1 = [[True, False, False], [False, False, True]] + m2 = [[True, False, True], [False, False, True]] + self.nmxs = np.ma.array(xs, mask=m1) + self.nmys = np.ma.array(ys, mask=m2) + # Big arrays + xl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + yl = np.random.uniform(-1, 1, 100*100).reshape(100, 100) + maskx = xl > 0.8 + masky = yl < -0.8 + self.nmxl = np.ma.array(xl, mask=maskx) + self.nmyl = np.ma.array(yl, mask=masky) + + def time_where(self, mtype, msize): + fun = eval(f"{mtype}.where") + if msize == 'small': + fun(self.nmxs > 2, self.nmxs, self.nmys) + elif msize == 'big': + fun(self.nmxl > 2, self.nmxl, self.nmyl) diff --git a/numpy/ma/bench.py b/numpy/ma/bench.py deleted file mode 100644 index 56865683d..000000000 --- a/numpy/ma/bench.py +++ /dev/null @@ -1,130 +0,0 @@ -#!/usr/bin/env python3 - -import timeit -import numpy - - -############################################################################### -# Global variables # -############################################################################### - - -# Small arrays -xs = numpy.random.uniform(-1, 1, 6).reshape(2, 3) -ys = numpy.random.uniform(-1, 1, 6).reshape(2, 3) -zs = xs + 1j * ys -m1 = [[True, False, False], [False, False, True]] -m2 = [[True, False, True], [False, False, True]] -nmxs = numpy.ma.array(xs, mask=m1) -nmys = numpy.ma.array(ys, mask=m2) -nmzs = numpy.ma.array(zs, mask=m1) - -# Big arrays -xl = numpy.random.uniform(-1, 1, 100*100).reshape(100, 100) -yl = numpy.random.uniform(-1, 1, 100*100).reshape(100, 100) -zl = xl + 1j * yl -maskx = xl > 0.8 -masky = yl < -0.8 -nmxl = numpy.ma.array(xl, mask=maskx) -nmyl = numpy.ma.array(yl, mask=masky) -nmzl = numpy.ma.array(zl, mask=maskx) - - -############################################################################### -# Functions # -############################################################################### - - -def timer(s, v='', nloop=500, nrep=3): - units = ["s", "ms", "µs", "ns"] - scaling = [1, 1e3, 1e6, 1e9] - print("%s : %-50s : " % (v, s), end=' ') - varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] - setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) - Timer = timeit.Timer(stmt=s, setup=setup) - best = min(Timer.repeat(nrep, nloop)) / nloop - if best > 0.0: - order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) - else: - order = 3 - print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, - 3, - best * scaling[order], - units[order])) - - -def compare_functions_1v(func, nloop=500, - xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): - funcname = func.__name__ - print("-"*50) - print(f'{funcname} on small arrays') - module, data = "numpy.ma", "nmxs" - timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) - - print("%s on large arrays" % funcname) - module, data = "numpy.ma", "nmxl" - timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) - return - -def compare_methods(methodname, args, vars='x', nloop=500, test=True, - xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): - print("-"*50) - print(f'{methodname} on small arrays') - data, ver = f'nm{vars}l', 'numpy.ma' - timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) - - print("%s on large arrays" % methodname) - data, ver = "nm%sl" % vars, 'numpy.ma' - timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) - return - -def compare_functions_2v(func, nloop=500, test=True, - xs=xs, nmxs=nmxs, - ys=ys, nmys=nmys, - xl=xl, nmxl=nmxl, - yl=yl, nmyl=nmyl): - funcname = func.__name__ - print("-"*50) - print(f'{funcname} on small arrays') - module, data = "numpy.ma", "nmxs,nmys" - timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) - - print(f'{funcname} on large arrays') - module, data = "numpy.ma", "nmxl,nmyl" - timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) - return - - -if __name__ == '__main__': - compare_functions_1v(numpy.sin) - compare_functions_1v(numpy.log) - compare_functions_1v(numpy.sqrt) - - compare_functions_2v(numpy.multiply) - compare_functions_2v(numpy.divide) - compare_functions_2v(numpy.power) - - compare_methods('ravel', '', nloop=1000) - compare_methods('conjugate', '', 'z', nloop=1000) - compare_methods('transpose', '', nloop=1000) - compare_methods('compressed', '', nloop=1000) - compare_methods('__getitem__', '0', nloop=1000) - compare_methods('__getitem__', '(0,0)', nloop=1000) - compare_methods('__getitem__', '[0,-1]', nloop=1000) - compare_methods('__setitem__', '0, 17', nloop=1000, test=False) - compare_methods('__setitem__', '(0,0), 17', nloop=1000, test=False) - - print("-"*50) - print("__setitem__ on small arrays") - timer('nmxs.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ', nloop=10000) - - print("-"*50) - print("__setitem__ on large arrays") - timer('nmxl.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ', nloop=10000) - - print("-"*50) - print("where on small arrays") - timer('numpy.ma.where(nmxs>2,nmxs,nmys)', 'numpy.ma ', nloop=1000) - print("-"*50) - print("where on large arrays") - timer('numpy.ma.where(nmxl>2,nmxl,nmyl)', 'numpy.ma ', nloop=100) diff --git a/numpy/tests/test_public_api.py b/numpy/tests/test_public_api.py index 8f654f3d9..28ed2f1df 100644 --- a/numpy/tests/test_public_api.py +++ b/numpy/tests/test_public_api.py @@ -280,7 +280,6 @@ PRIVATE_BUT_PRESENT_MODULES = ['numpy.' + s for s in [ "lib.utils", "linalg.lapack_lite", "linalg.linalg", - "ma.bench", "ma.core", "ma.testutils", "ma.timer_comparison", |
