diff options
author | Matti Picus <matti.picus@gmail.com> | 2020-12-16 09:29:25 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-12-16 09:29:25 +0200 |
commit | ebe111e30186fe24473b854db789172c11c67d4c (patch) | |
tree | 1037ba0cb291c1b1451e9b7e83ea4dd1d3e27f47 /doc/source/reference/c-api/array.rst | |
parent | b19eaf1fdb277310e82defbfc82d6476c3845dfd (diff) | |
parent | 6c8aa42ce668aa57ddc3347df35998fc32e7240a (diff) | |
download | numpy-ebe111e30186fe24473b854db789172c11c67d4c.tar.gz |
Merge pull request #16370 from takanori-pskq/i16217
DOC: Fix for building with sphinx 3
Diffstat (limited to 'doc/source/reference/c-api/array.rst')
-rw-r--r-- | doc/source/reference/c-api/array.rst | 90 |
1 files changed, 43 insertions, 47 deletions
diff --git a/doc/source/reference/c-api/array.rst b/doc/source/reference/c-api/array.rst index 3aa541b79..1673f1d6b 100644 --- a/doc/source/reference/c-api/array.rst +++ b/doc/source/reference/c-api/array.rst @@ -22,8 +22,8 @@ Array structure and data access These macros access the :c:type:`PyArrayObject` structure members and are defined in ``ndarraytypes.h``. The input argument, *arr*, can be any -:c:type:`PyObject *<PyObject>` that is directly interpretable as a -:c:type:`PyArrayObject *` (any instance of the :c:data:`PyArray_Type` +:c:expr:`PyObject *` that is directly interpretable as a +:c:expr:`PyArrayObject *` (any instance of the :c:data:`PyArray_Type` and its sub-types). .. c:function:: int PyArray_NDIM(PyArrayObject *arr) @@ -825,7 +825,7 @@ General check of Python Type Evaluates true if *op* is an instance of (a subclass of) :c:data:`PyArray_Type` and has 0 dimensions. -.. c:function:: PyArray_IsScalar(op, cls) +.. c:macro:: PyArray_IsScalar(op, cls) Evaluates true if *op* is an instance of ``Py{cls}ArrType_Type``. @@ -864,8 +864,8 @@ Data-type checking For the typenum macros, the argument is an integer representing an enumerated array data type. For the array type checking macros the -argument must be a :c:type:`PyObject *<PyObject>` that can be directly interpreted as a -:c:type:`PyArrayObject *`. +argument must be a :c:expr:`PyObject *` that can be directly interpreted as a +:c:expr:`PyArrayObject *`. .. c:function:: int PyTypeNum_ISUNSIGNED(int num) @@ -1022,7 +1022,7 @@ argument must be a :c:type:`PyObject *<PyObject>` that can be directly interpret .. c:function:: int PyArray_EquivByteorders(int b1, int b2) - True if byteorder characters ( :c:data:`NPY_LITTLE`, + True if byteorder characters *b1* and *b2* ( :c:data:`NPY_LITTLE`, :c:data:`NPY_BIG`, :c:data:`NPY_NATIVE`, :c:data:`NPY_IGNORE` ) are either equal or equivalent as to their specification of a native byte order. Thus, on a little-endian machine :c:data:`NPY_LITTLE` @@ -2781,14 +2781,14 @@ Data-type descriptors Data-type objects must be reference counted so be aware of the action on the data-type reference of different C-API calls. The standard rule is that when a data-type object is returned it is a - new reference. Functions that take :c:type:`PyArray_Descr *` objects and + new reference. Functions that take :c:expr:`PyArray_Descr *` objects and return arrays steal references to the data-type their inputs unless otherwise noted. Therefore, you must own a reference to any data-type object used as input to such a function. .. c:function:: int PyArray_DescrCheck(PyObject* obj) - Evaluates as true if *obj* is a data-type object ( :c:type:`PyArray_Descr *` ). + Evaluates as true if *obj* is a data-type object ( :c:expr:`PyArray_Descr *` ). .. c:function:: PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj) @@ -3485,10 +3485,6 @@ Miscellaneous Macros Evaluates as True if arrays *a1* and *a2* have the same shape. -.. c:var:: a - -.. c:var:: b - .. c:macro:: PyArray_MAX(a,b) Returns the maximum of *a* and *b*. If (*a*) or (*b*) are @@ -3547,22 +3543,22 @@ Miscellaneous Macros Enumerated Types ^^^^^^^^^^^^^^^^ -.. c:type:: NPY_SORTKIND +.. c:enum:: NPY_SORTKIND A special variable-type which can take on different values to indicate the sorting algorithm being used. - .. c:var:: NPY_QUICKSORT + .. c:enumerator:: NPY_QUICKSORT - .. c:var:: NPY_HEAPSORT + .. c:enumerator:: NPY_HEAPSORT - .. c:var:: NPY_MERGESORT + .. c:enumerator:: NPY_MERGESORT - .. c:var:: NPY_STABLESORT + .. c:enumerator:: NPY_STABLESORT Used as an alias of :c:data:`NPY_MERGESORT` and vica versa. - .. c:var:: NPY_NSORTS + .. c:enumerator:: NPY_NSORTS Defined to be the number of sorts. It is fixed at three by the need for backwards compatibility, and consequently :c:data:`NPY_MERGESORT` and @@ -3570,90 +3566,90 @@ Enumerated Types of several stable sorting algorithms depending on the data type. -.. c:type:: NPY_SCALARKIND +.. c:enum:: NPY_SCALARKIND A special variable type indicating the number of "kinds" of scalars distinguished in determining scalar-coercion rules. This variable can take on the values: - .. c:var:: NPY_NOSCALAR + .. c:enumerator:: NPY_NOSCALAR - .. c:var:: NPY_BOOL_SCALAR + .. c:enumerator:: NPY_BOOL_SCALAR - .. c:var:: NPY_INTPOS_SCALAR + .. c:enumerator:: NPY_INTPOS_SCALAR - .. c:var:: NPY_INTNEG_SCALAR + .. c:enumerator:: NPY_INTNEG_SCALAR - .. c:var:: NPY_FLOAT_SCALAR + .. c:enumerator:: NPY_FLOAT_SCALAR - .. c:var:: NPY_COMPLEX_SCALAR + .. c:enumerator:: NPY_COMPLEX_SCALAR - .. c:var:: NPY_OBJECT_SCALAR + .. c:enumerator:: NPY_OBJECT_SCALAR - .. c:var:: NPY_NSCALARKINDS + .. c:enumerator:: NPY_NSCALARKINDS Defined to be the number of scalar kinds (not including :c:data:`NPY_NOSCALAR`). -.. c:type:: NPY_ORDER +.. c:enum:: NPY_ORDER An enumeration type indicating the element order that an array should be interpreted in. When a brand new array is created, generally only **NPY_CORDER** and **NPY_FORTRANORDER** are used, whereas when one or more inputs are provided, the order can be based on them. - .. c:var:: NPY_ANYORDER + .. c:enumerator:: NPY_ANYORDER Fortran order if all the inputs are Fortran, C otherwise. - .. c:var:: NPY_CORDER + .. c:enumerator:: NPY_CORDER C order. - .. c:var:: NPY_FORTRANORDER + .. c:enumerator:: NPY_FORTRANORDER Fortran order. - .. c:var:: NPY_KEEPORDER + .. c:enumerator:: NPY_KEEPORDER An order as close to the order of the inputs as possible, even if the input is in neither C nor Fortran order. -.. c:type:: NPY_CLIPMODE +.. c:enum:: NPY_CLIPMODE A variable type indicating the kind of clipping that should be applied in certain functions. - .. c:var:: NPY_RAISE + .. c:enumerator:: NPY_RAISE The default for most operations, raises an exception if an index is out of bounds. - .. c:var:: NPY_CLIP + .. c:enumerator:: NPY_CLIP Clips an index to the valid range if it is out of bounds. - .. c:var:: NPY_WRAP + .. c:enumerator:: NPY_WRAP Wraps an index to the valid range if it is out of bounds. -.. c:type:: NPY_SEARCHSIDE +.. c:enum:: NPY_SEARCHSIDE A variable type indicating whether the index returned should be that of the first suitable location (if :c:data:`NPY_SEARCHLEFT`) or of the last (if :c:data:`NPY_SEARCHRIGHT`). - .. c:var:: NPY_SEARCHLEFT + .. c:enumerator:: NPY_SEARCHLEFT - .. c:var:: NPY_SEARCHRIGHT + .. c:enumerator:: NPY_SEARCHRIGHT -.. c:type:: NPY_SELECTKIND +.. c:enum:: NPY_SELECTKIND A variable type indicating the selection algorithm being used. - .. c:var:: NPY_INTROSELECT + .. c:enumerator:: NPY_INTROSELECT -.. c:type:: NPY_CASTING +.. c:enum:: NPY_CASTING .. versionadded:: 1.6 @@ -3661,25 +3657,25 @@ Enumerated Types be. This is used by the iterator added in NumPy 1.6, and is intended to be used more broadly in a future version. - .. c:var:: NPY_NO_CASTING + .. c:enumerator:: NPY_NO_CASTING Only allow identical types. - .. c:var:: NPY_EQUIV_CASTING + .. c:enumerator:: NPY_EQUIV_CASTING Allow identical and casts involving byte swapping. - .. c:var:: NPY_SAFE_CASTING + .. c:enumerator:: NPY_SAFE_CASTING Only allow casts which will not cause values to be rounded, truncated, or otherwise changed. - .. c:var:: NPY_SAME_KIND_CASTING + .. c:enumerator:: NPY_SAME_KIND_CASTING Allow any safe casts, and casts between types of the same kind. For example, float64 -> float32 is permitted with this rule. - .. c:var:: NPY_UNSAFE_CASTING + .. c:enumerator:: NPY_UNSAFE_CASTING Allow any cast, no matter what kind of data loss may occur. |