summaryrefslogtreecommitdiff
path: root/doc/source/reference/c-api
diff options
context:
space:
mode:
authorDimitri Papadopoulos <3234522+DimitriPapadopoulos@users.noreply.github.com>2022-01-13 10:56:00 +0100
committerDimitri Papadopoulos <3234522+DimitriPapadopoulos@users.noreply.github.com>2022-01-13 11:29:51 +0100
commit58dbe260a2e41c31f1ab03e1abdb1f01da4c1edc (patch)
tree8aada9a88cb8718941d16faafb2749462f8325e5 /doc/source/reference/c-api
parent813a0c11186ded0b5caeb853fd2b22fb9addd511 (diff)
downloadnumpy-58dbe260a2e41c31f1ab03e1abdb1f01da4c1edc.tar.gz
MAINT, DOC: discard repeated words
Diffstat (limited to 'doc/source/reference/c-api')
-rw-r--r--doc/source/reference/c-api/iterator.rst2
-rw-r--r--doc/source/reference/c-api/ufunc.rst2
2 files changed, 2 insertions, 2 deletions
diff --git a/doc/source/reference/c-api/iterator.rst b/doc/source/reference/c-api/iterator.rst
index 83644d8b2..b4adaef9b 100644
--- a/doc/source/reference/c-api/iterator.rst
+++ b/doc/source/reference/c-api/iterator.rst
@@ -653,7 +653,7 @@ Construction and Destruction
may not be repeated. The following example is how normal broadcasting
applies to a 3-D array, a 2-D array, a 1-D array and a scalar.
- **Note**: Before NumPy 1.8 ``oa_ndim == 0` was used for signalling that
+ **Note**: Before NumPy 1.8 ``oa_ndim == 0` was used for signalling
that ``op_axes`` and ``itershape`` are unused. This is deprecated and
should be replaced with -1. Better backward compatibility may be
achieved by using :c:func:`NpyIter_MultiNew` for this case.
diff --git a/doc/source/reference/c-api/ufunc.rst b/doc/source/reference/c-api/ufunc.rst
index 2909ce9af..39447ae24 100644
--- a/doc/source/reference/c-api/ufunc.rst
+++ b/doc/source/reference/c-api/ufunc.rst
@@ -171,7 +171,7 @@ Functions
`numpy.dtype.num` (built-in only) that the corresponding
function in the ``func`` array accepts. For instance, for a comparison
ufunc with three ``ntypes``, two ``nin`` and one ``nout``, where the
- first function accepts `numpy.int32` and the the second
+ first function accepts `numpy.int32` and the second
`numpy.int64`, with both returning `numpy.bool_`, ``types`` would
be ``(char[]) {5, 5, 0, 7, 7, 0}`` since ``NPY_INT32`` is 5,
``NPY_INT64`` is 7, and ``NPY_BOOL`` is 0.