diff options
author | mattip <matti.picus@gmail.com> | 2019-04-26 18:15:49 -0700 |
---|---|---|
committer | mattip <matti.picus@gmail.com> | 2019-04-30 18:10:46 -0400 |
commit | 512c6451fd61c7d1e8053082cd93ecf10417ea22 (patch) | |
tree | d02522f4279def1c4b59544402c4df55a567c02e /doc/source/reference/routines.linalg.rst | |
parent | bf1e9b747db5b0ccee6fe58c92a4d0adee2c2063 (diff) | |
download | numpy-512c6451fd61c7d1e8053082cd93ecf10417ea22.tar.gz |
DOC: document existance of linalg backends
Diffstat (limited to 'doc/source/reference/routines.linalg.rst')
-rw-r--r-- | doc/source/reference/routines.linalg.rst | 13 |
1 files changed, 13 insertions, 0 deletions
diff --git a/doc/source/reference/routines.linalg.rst b/doc/source/reference/routines.linalg.rst index c6bffc874..d42e77ad8 100644 --- a/doc/source/reference/routines.linalg.rst +++ b/doc/source/reference/routines.linalg.rst @@ -5,6 +5,19 @@ Linear algebra (:mod:`numpy.linalg`) ************************************ +The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient +low level implementations of standard linear algebra algorithms. Those +libraries may be provided by NumPy itself using C versions of a subset of their +reference implementations but, when possible, highly optimized libraries that +take advantage of specialized processor functionality are preferred. Examples +of such libraries are OpenBLAS_, MKL (TM), and ATLAS. Because those libraries +are multithreaded and processor dependent, environmental variables and external +packages such as threadpoolctl_ may be needed to control the number of threads +or specify the processor architecture. + +.. _OpenBLAS: https://www.openblas.net/ +.. _threadpoolctl: https://github.com/joblib/threadpoolctl + .. currentmodule:: numpy Matrix and vector products |