summaryrefslogtreecommitdiff
path: root/doc/source/reference/routines.linalg.rst
diff options
context:
space:
mode:
authormattip <matti.picus@gmail.com>2019-04-26 18:15:49 -0700
committermattip <matti.picus@gmail.com>2019-04-30 18:10:46 -0400
commit512c6451fd61c7d1e8053082cd93ecf10417ea22 (patch)
treed02522f4279def1c4b59544402c4df55a567c02e /doc/source/reference/routines.linalg.rst
parentbf1e9b747db5b0ccee6fe58c92a4d0adee2c2063 (diff)
downloadnumpy-512c6451fd61c7d1e8053082cd93ecf10417ea22.tar.gz
DOC: document existance of linalg backends
Diffstat (limited to 'doc/source/reference/routines.linalg.rst')
-rw-r--r--doc/source/reference/routines.linalg.rst13
1 files changed, 13 insertions, 0 deletions
diff --git a/doc/source/reference/routines.linalg.rst b/doc/source/reference/routines.linalg.rst
index c6bffc874..d42e77ad8 100644
--- a/doc/source/reference/routines.linalg.rst
+++ b/doc/source/reference/routines.linalg.rst
@@ -5,6 +5,19 @@
Linear algebra (:mod:`numpy.linalg`)
************************************
+The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
+low level implementations of standard linear algebra algorithms. Those
+libraries may be provided by NumPy itself using C versions of a subset of their
+reference implementations but, when possible, highly optimized libraries that
+take advantage of specialized processor functionality are preferred. Examples
+of such libraries are OpenBLAS_, MKL (TM), and ATLAS. Because those libraries
+are multithreaded and processor dependent, environmental variables and external
+packages such as threadpoolctl_ may be needed to control the number of threads
+or specify the processor architecture.
+
+.. _OpenBLAS: https://www.openblas.net/
+.. _threadpoolctl: https://github.com/joblib/threadpoolctl
+
.. currentmodule:: numpy
Matrix and vector products