summaryrefslogtreecommitdiff
path: root/doc/source
diff options
context:
space:
mode:
authorRoss Barnowski <rossbar@berkeley.edu>2021-10-13 19:53:57 -0700
committerRoss Barnowski <rossbar@berkeley.edu>2021-10-13 20:14:13 -0700
commitd03e7887e12f9e9041113658775ba8cc478d5c58 (patch)
treedbd7820ae19ceccb0cb577db09ac4b9f692f8b3f /doc/source
parente8692223ffb675dca714bf13bb8f19e73b273095 (diff)
downloadnumpy-d03e7887e12f9e9041113658775ba8cc478d5c58.tar.gz
Modify code to match img illustrating reduction along axis.
Co-authored-by: MarsBarLee <mlee@quansight.com>
Diffstat (limited to 'doc/source')
-rw-r--r--doc/source/user/absolute_beginners.rst10
1 files changed, 8 insertions, 2 deletions
diff --git a/doc/source/user/absolute_beginners.rst b/doc/source/user/absolute_beginners.rst
index bb570f622..7b9e33232 100644
--- a/doc/source/user/absolute_beginners.rst
+++ b/doc/source/user/absolute_beginners.rst
@@ -899,12 +899,18 @@ You can aggregate matrices the same way you aggregated vectors::
.. image:: images/np_matrix_aggregation.png
You can aggregate all the values in a matrix and you can aggregate them across
-columns or rows using the ``axis`` parameter::
+columns or rows using the ``axis`` parameter. To illustrate this point, let's
+look at slightly modified dataset::
+ >>> data = np.array([[1, 2], [5, 3], [4, 6]])
+ >>> data
+ array([[1, 2],
+ [5, 3],
+ [4, 6]])
>>> data.max(axis=0)
array([5, 6])
>>> data.max(axis=1)
- array([2, 4, 6])
+ array([2, 5, 6])
.. image:: images/np_matrix_aggregation_row.png