summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorPamphile ROY <roy.pamphile@gmail.com>2021-04-14 21:03:49 +0200
committerPamphile ROY <roy.pamphile@gmail.com>2021-04-14 21:03:49 +0200
commit64bb06f002f2085c172c2f7dc621289d3cd54cbe (patch)
tree8376bfcf48abb3af3af6cd6157575c4f013530ad /doc
parent04c97a63e1420402b54b89e05082a0ff4cb1c001 (diff)
downloadnumpy-64bb06f002f2085c172c2f7dc621289d3cd54cbe.tar.gz
DOC: revert global seed
Diffstat (limited to 'doc')
-rw-r--r--doc/TESTS.rst.txt3
1 files changed, 1 insertions, 2 deletions
diff --git a/doc/TESTS.rst.txt b/doc/TESTS.rst.txt
index c7e89b5b9..fd8845291 100644
--- a/doc/TESTS.rst.txt
+++ b/doc/TESTS.rst.txt
@@ -351,8 +351,7 @@ new bugs or regressions, a test that passes most of the time but fails
occasionally with no code changes is not helpful. Make the random data
deterministic by setting the random number seed before generating it. Use
either Python's ``random.seed(some_number)`` or NumPy's
-``rng = np.random.default_rng(some_number)``, depending on the source of
-random numbers.
+``numpy.random.seed(some_number)``, depending on the source of random numbers.
Alternatively, you can use `Hypothesis`_ to generate arbitrary data.
Hypothesis manages both Python's and Numpy's random seeds for you, and