diff options
author | Stefan van der Walt <stefan@sun.ac.za> | 2008-03-01 08:20:07 +0000 |
---|---|---|
committer | Stefan van der Walt <stefan@sun.ac.za> | 2008-03-01 08:20:07 +0000 |
commit | 0863e654ae4ef065ee390a41d19849929d3a9c5c (patch) | |
tree | 4048653efd49364902fcf6665375a2c06dc398a8 /numpy/add_newdocs.py | |
parent | 6a63cc36835029f6613d64721a610b6c910e8b85 (diff) | |
download | numpy-0863e654ae4ef065ee390a41d19849929d3a9c5c.tar.gz |
Add basic usage docstring for dtype.
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index 7955beca7..b1fb50900 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -4,6 +4,61 @@ # docstrings without requiring a re-compile. from lib import add_newdoc +add_newdoc('numpy.core', 'dtype', +"""Create a data type. + +A numpy array is homogeneous, and contains elements described by a +dtype. A dtype can be constructed from different combinations of +fundamental numeric types, as illustrated below. + +Examples +-------- + +Using array-scalar type: +>>> dtype(int16) +dtype('int16') + +Record, one field name 'f1', containing int16: +>>> dtype([('f1', int16)]) +dtype([('f1', '<i2')]) + +Record, one field named 'f1', in itself containing a record with one field: +>>> dtype([('f1', [('f1', int16)])]) +dtype([('f1', [('f1', '<i2')])]) + +Record, two fields: the first field contains an unsigned int, the +second an int32: +>>> dtype([('f1', uint), ('f2', int32)]) +dtype([('f1', '<u4'), ('f2', '<i4')]) + +Using array-protocol type strings: +>>> dtype([('a','f8'),('b','S10')]) +dtype([('a', '<f8'), ('b', '|S10')]) + +Using comma-separated field formats. The shape is (2,3): +>>> dtype("i4, (2,3)f8") +dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) + +Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` +is a flexible type, here of size 10: +>>> dtype([('hello',(int,3)),('world',void,10)]) +dtype([('hello', '<i4', 3), ('world', '|V10')]) + +Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are +the offsets in bytes: +>>> dtype((int16, {'x':(int8,0), 'y':(int8,1)})) +dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) + +Using dictionaries. Two fields named 'gender' and 'age': +>>> dtype({'names':['gender','age'], 'formats':['S1',uint8]}) +dtype([('gender', '|S1'), ('age', '|u1')]) + +Offsets in bytes, here 0 and 25: +>>> dtype({'surname':('S25',0),'age':(uint8,25)}) +dtype([('surname', '|S25'), ('age', '|u1')]) + +""") + add_newdoc('numpy.core','dtype', [('fields', "Fields of the data-type or None if no fields"), ('names', "Names of fields or None if no fields"), |