summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2018-07-01 15:13:21 -0700
committerEric Wieser <wieser.eric@gmail.com>2018-07-02 09:08:48 -0700
commit2244cd929354fb4157eaa78204ad6bb3bebea9bf (patch)
tree91f66502dc6e1601e13fdd6bc328a6243ab3f21d /numpy/add_newdocs.py
parent11302b66fec3e9f64e0eb77075344acec65d2c0f (diff)
downloadnumpy-2244cd929354fb4157eaa78204ad6bb3bebea9bf.tar.gz
MAINT: Move add_newdocs into core, since it only adds docs to those pieces
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py8144
1 files changed, 0 insertions, 8144 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
deleted file mode 100644
index a882bf1e0..000000000
--- a/numpy/add_newdocs.py
+++ /dev/null
@@ -1,8144 +0,0 @@
-"""
-This is only meant to add docs to objects defined in C-extension modules.
-The purpose is to allow easier editing of the docstrings without
-requiring a re-compile.
-
-NOTE: Many of the methods of ndarray have corresponding functions.
- If you update these docstrings, please keep also the ones in
- core/fromnumeric.py, core/defmatrix.py up-to-date.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-from numpy.lib import add_newdoc
-
-###############################################################################
-#
-# flatiter
-#
-# flatiter needs a toplevel description
-#
-###############################################################################
-
-add_newdoc('numpy.core', 'flatiter',
- """
- Flat iterator object to iterate over arrays.
-
- A `flatiter` iterator is returned by ``x.flat`` for any array `x`.
- It allows iterating over the array as if it were a 1-D array,
- either in a for-loop or by calling its `next` method.
-
- Iteration is done in row-major, C-style order (the last
- index varying the fastest). The iterator can also be indexed using
- basic slicing or advanced indexing.
-
- See Also
- --------
- ndarray.flat : Return a flat iterator over an array.
- ndarray.flatten : Returns a flattened copy of an array.
-
- Notes
- -----
- A `flatiter` iterator can not be constructed directly from Python code
- by calling the `flatiter` constructor.
-
- Examples
- --------
- >>> x = np.arange(6).reshape(2, 3)
- >>> fl = x.flat
- >>> type(fl)
- <type 'numpy.flatiter'>
- >>> for item in fl:
- ... print(item)
- ...
- 0
- 1
- 2
- 3
- 4
- 5
-
- >>> fl[2:4]
- array([2, 3])
-
- """)
-
-# flatiter attributes
-
-add_newdoc('numpy.core', 'flatiter', ('base',
- """
- A reference to the array that is iterated over.
-
- Examples
- --------
- >>> x = np.arange(5)
- >>> fl = x.flat
- >>> fl.base is x
- True
-
- """))
-
-
-
-add_newdoc('numpy.core', 'flatiter', ('coords',
- """
- An N-dimensional tuple of current coordinates.
-
- Examples
- --------
- >>> x = np.arange(6).reshape(2, 3)
- >>> fl = x.flat
- >>> fl.coords
- (0, 0)
- >>> fl.next()
- 0
- >>> fl.coords
- (0, 1)
-
- """))
-
-
-
-add_newdoc('numpy.core', 'flatiter', ('index',
- """
- Current flat index into the array.
-
- Examples
- --------
- >>> x = np.arange(6).reshape(2, 3)
- >>> fl = x.flat
- >>> fl.index
- 0
- >>> fl.next()
- 0
- >>> fl.index
- 1
-
- """))
-
-# flatiter functions
-
-add_newdoc('numpy.core', 'flatiter', ('__array__',
- """__array__(type=None) Get array from iterator
-
- """))
-
-
-add_newdoc('numpy.core', 'flatiter', ('copy',
- """
- copy()
-
- Get a copy of the iterator as a 1-D array.
-
- Examples
- --------
- >>> x = np.arange(6).reshape(2, 3)
- >>> x
- array([[0, 1, 2],
- [3, 4, 5]])
- >>> fl = x.flat
- >>> fl.copy()
- array([0, 1, 2, 3, 4, 5])
-
- """))
-
-
-###############################################################################
-#
-# nditer
-#
-###############################################################################
-
-add_newdoc('numpy.core', 'nditer',
- """
- Efficient multi-dimensional iterator object to iterate over arrays.
- To get started using this object, see the
- :ref:`introductory guide to array iteration <arrays.nditer>`.
-
- Parameters
- ----------
- op : ndarray or sequence of array_like
- The array(s) to iterate over.
- flags : sequence of str, optional
- Flags to control the behavior of the iterator.
-
- * "buffered" enables buffering when required.
- * "c_index" causes a C-order index to be tracked.
- * "f_index" causes a Fortran-order index to be tracked.
- * "multi_index" causes a multi-index, or a tuple of indices
- with one per iteration dimension, to be tracked.
- * "common_dtype" causes all the operands to be converted to
- a common data type, with copying or buffering as necessary.
- * "copy_if_overlap" causes the iterator to determine if read
- operands have overlap with write operands, and make temporary
- copies as necessary to avoid overlap. False positives (needless
- copying) are possible in some cases.
- * "delay_bufalloc" delays allocation of the buffers until
- a reset() call is made. Allows "allocate" operands to
- be initialized before their values are copied into the buffers.
- * "external_loop" causes the `values` given to be
- one-dimensional arrays with multiple values instead of
- zero-dimensional arrays.
- * "grow_inner" allows the `value` array sizes to be made
- larger than the buffer size when both "buffered" and
- "external_loop" is used.
- * "ranged" allows the iterator to be restricted to a sub-range
- of the iterindex values.
- * "refs_ok" enables iteration of reference types, such as
- object arrays.
- * "reduce_ok" enables iteration of "readwrite" operands
- which are broadcasted, also known as reduction operands.
- * "zerosize_ok" allows `itersize` to be zero.
- op_flags : list of list of str, optional
- This is a list of flags for each operand. At minimum, one of
- "readonly", "readwrite", or "writeonly" must be specified.
-
- * "readonly" indicates the operand will only be read from.
- * "readwrite" indicates the operand will be read from and written to.
- * "writeonly" indicates the operand will only be written to.
- * "no_broadcast" prevents the operand from being broadcasted.
- * "contig" forces the operand data to be contiguous.
- * "aligned" forces the operand data to be aligned.
- * "nbo" forces the operand data to be in native byte order.
- * "copy" allows a temporary read-only copy if required.
- * "updateifcopy" allows a temporary read-write copy if required.
- * "allocate" causes the array to be allocated if it is None
- in the `op` parameter.
- * "no_subtype" prevents an "allocate" operand from using a subtype.
- * "arraymask" indicates that this operand is the mask to use
- for selecting elements when writing to operands with the
- 'writemasked' flag set. The iterator does not enforce this,
- but when writing from a buffer back to the array, it only
- copies those elements indicated by this mask.
- * 'writemasked' indicates that only elements where the chosen
- 'arraymask' operand is True will be written to.
- * "overlap_assume_elementwise" can be used to mark operands that are
- accessed only in the iterator order, to allow less conservative
- copying when "copy_if_overlap" is present.
- op_dtypes : dtype or tuple of dtype(s), optional
- The required data type(s) of the operands. If copying or buffering
- is enabled, the data will be converted to/from their original types.
- order : {'C', 'F', 'A', 'K'}, optional
- Controls the iteration order. 'C' means C order, 'F' means
- Fortran order, 'A' means 'F' order if all the arrays are Fortran
- contiguous, 'C' order otherwise, and 'K' means as close to the
- order the array elements appear in memory as possible. This also
- affects the element memory order of "allocate" operands, as they
- are allocated to be compatible with iteration order.
- Default is 'K'.
- casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
- Controls what kind of data casting may occur when making a copy
- or buffering. Setting this to 'unsafe' is not recommended,
- as it can adversely affect accumulations.
-
- * 'no' means the data types should not be cast at all.
- * 'equiv' means only byte-order changes are allowed.
- * 'safe' means only casts which can preserve values are allowed.
- * 'same_kind' means only safe casts or casts within a kind,
- like float64 to float32, are allowed.
- * 'unsafe' means any data conversions may be done.
- op_axes : list of list of ints, optional
- If provided, is a list of ints or None for each operands.
- The list of axes for an operand is a mapping from the dimensions
- of the iterator to the dimensions of the operand. A value of
- -1 can be placed for entries, causing that dimension to be
- treated as "newaxis".
- itershape : tuple of ints, optional
- The desired shape of the iterator. This allows "allocate" operands
- with a dimension mapped by op_axes not corresponding to a dimension
- of a different operand to get a value not equal to 1 for that
- dimension.
- buffersize : int, optional
- When buffering is enabled, controls the size of the temporary
- buffers. Set to 0 for the default value.
-
- Attributes
- ----------
- dtypes : tuple of dtype(s)
- The data types of the values provided in `value`. This may be
- different from the operand data types if buffering is enabled.
- Valid only before the iterator is closed.
- finished : bool
- Whether the iteration over the operands is finished or not.
- has_delayed_bufalloc : bool
- If True, the iterator was created with the "delay_bufalloc" flag,
- and no reset() function was called on it yet.
- has_index : bool
- If True, the iterator was created with either the "c_index" or
- the "f_index" flag, and the property `index` can be used to
- retrieve it.
- has_multi_index : bool
- If True, the iterator was created with the "multi_index" flag,
- and the property `multi_index` can be used to retrieve it.
- index
- When the "c_index" or "f_index" flag was used, this property
- provides access to the index. Raises a ValueError if accessed
- and `has_index` is False.
- iterationneedsapi : bool
- Whether iteration requires access to the Python API, for example
- if one of the operands is an object array.
- iterindex : int
- An index which matches the order of iteration.
- itersize : int
- Size of the iterator.
- itviews
- Structured view(s) of `operands` in memory, matching the reordered
- and optimized iterator access pattern. Valid only before the iterator
- is closed.
- multi_index
- When the "multi_index" flag was used, this property
- provides access to the index. Raises a ValueError if accessed
- accessed and `has_multi_index` is False.
- ndim : int
- The iterator's dimension.
- nop : int
- The number of iterator operands.
- operands : tuple of operand(s)
- The array(s) to be iterated over. Valid only before the iterator is
- closed.
- shape : tuple of ints
- Shape tuple, the shape of the iterator.
- value
- Value of `operands` at current iteration. Normally, this is a
- tuple of array scalars, but if the flag "external_loop" is used,
- it is a tuple of one dimensional arrays.
-
- Notes
- -----
- `nditer` supersedes `flatiter`. The iterator implementation behind
- `nditer` is also exposed by the NumPy C API.
-
- The Python exposure supplies two iteration interfaces, one which follows
- the Python iterator protocol, and another which mirrors the C-style
- do-while pattern. The native Python approach is better in most cases, but
- if you need the iterator's coordinates or index, use the C-style pattern.
-
- Examples
- --------
- Here is how we might write an ``iter_add`` function, using the
- Python iterator protocol::
-
- def iter_add_py(x, y, out=None):
- addop = np.add
- it = np.nditer([x, y, out], [],
- [['readonly'], ['readonly'], ['writeonly','allocate']])
- with it:
- for (a, b, c) in it:
- addop(a, b, out=c)
- return it.operands[2]
-
- Here is the same function, but following the C-style pattern::
-
- def iter_add(x, y, out=None):
- addop = np.add
-
- it = np.nditer([x, y, out], [],
- [['readonly'], ['readonly'], ['writeonly','allocate']])
- with it:
- while not it.finished:
- addop(it[0], it[1], out=it[2])
- it.iternext()
-
- return it.operands[2]
-
- Here is an example outer product function::
-
- def outer_it(x, y, out=None):
- mulop = np.multiply
-
- it = np.nditer([x, y, out], ['external_loop'],
- [['readonly'], ['readonly'], ['writeonly', 'allocate']],
- op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
- [-1] * x.ndim + list(range(y.ndim)),
- None])
- with it:
- for (a, b, c) in it:
- mulop(a, b, out=c)
- return it.operands[2]
-
- >>> a = np.arange(2)+1
- >>> b = np.arange(3)+1
- >>> outer_it(a,b)
- array([[1, 2, 3],
- [2, 4, 6]])
-
- Here is an example function which operates like a "lambda" ufunc::
-
- def luf(lamdaexpr, *args, **kwargs):
- "luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)"
- nargs = len(args)
- op = (kwargs.get('out',None),) + args
- it = np.nditer(op, ['buffered','external_loop'],
- [['writeonly','allocate','no_broadcast']] +
- [['readonly','nbo','aligned']]*nargs,
- order=kwargs.get('order','K'),
- casting=kwargs.get('casting','safe'),
- buffersize=kwargs.get('buffersize',0))
- while not it.finished:
- it[0] = lamdaexpr(*it[1:])
- it.iternext()
- return it.operands[0]
-
- >>> a = np.arange(5)
- >>> b = np.ones(5)
- >>> luf(lambda i,j:i*i + j/2, a, b)
- array([ 0.5, 1.5, 4.5, 9.5, 16.5])
-
- If operand flags `"writeonly"` or `"readwrite"` are used the operands may
- be views into the original data with the `WRITEBACKIFCOPY` flag. In this case
- nditer must be used as a context manager or the nditer.close
- method must be called before using the result. The temporary
- data will be written back to the original data when the `__exit__`
- function is called but not before:
-
- >>> a = np.arange(6, dtype='i4')[::-2]
- >>> with nditer(a, [],
- ... [['writeonly', 'updateifcopy']],
- ... casting='unsafe',
- ... op_dtypes=[np.dtype('f4')]) as i:
- ... x = i.operands[0]
- ... x[:] = [-1, -2, -3]
- ... # a still unchanged here
- >>> a, x
- array([-1, -2, -3]), array([-1, -2, -3])
-
- It is important to note that once the iterator is exited, dangling
- references (like `x` in the example) may or may not share data with
- the original data `a`. If writeback semantics were active, i.e. if
- `x.base.flags.writebackifcopy` is `True`, then exiting the iterator
- will sever the connection between `x` and `a`, writing to `x` will
- no longer write to `a`. If writeback semantics are not active, then
- `x.data` will still point at some part of `a.data`, and writing to
- one will affect the other.
-
- """)
-
-# nditer methods
-
-add_newdoc('numpy.core', 'nditer', ('copy',
- """
- copy()
-
- Get a copy of the iterator in its current state.
-
- Examples
- --------
- >>> x = np.arange(10)
- >>> y = x + 1
- >>> it = np.nditer([x, y])
- >>> it.next()
- (array(0), array(1))
- >>> it2 = it.copy()
- >>> it2.next()
- (array(1), array(2))
-
- """))
-
-add_newdoc('numpy.core', 'nditer', ('operands',
- """
- operands[`Slice`]
-
- The array(s) to be iterated over. Valid only before the iterator is closed.
- """))
-
-add_newdoc('numpy.core', 'nditer', ('debug_print',
- """
- debug_print()
-
- Print the current state of the `nditer` instance and debug info to stdout.
-
- """))
-
-add_newdoc('numpy.core', 'nditer', ('enable_external_loop',
- """
- enable_external_loop()
-
- When the "external_loop" was not used during construction, but
- is desired, this modifies the iterator to behave as if the flag
- was specified.
-
- """))
-
-add_newdoc('numpy.core', 'nditer', ('iternext',
- """
- iternext()
-
- Check whether iterations are left, and perform a single internal iteration
- without returning the result. Used in the C-style pattern do-while
- pattern. For an example, see `nditer`.
-
- Returns
- -------
- iternext : bool
- Whether or not there are iterations left.
-
- """))
-
-add_newdoc('numpy.core', 'nditer', ('remove_axis',
- """
- remove_axis(i)
-
- Removes axis `i` from the iterator. Requires that the flag "multi_index"
- be enabled.
-
- """))
-
-add_newdoc('numpy.core', 'nditer', ('remove_multi_index',
- """
- remove_multi_index()
-
- When the "multi_index" flag was specified, this removes it, allowing
- the internal iteration structure to be optimized further.
-
- """))
-
-add_newdoc('numpy.core', 'nditer', ('reset',
- """
- reset()
-
- Reset the iterator to its initial state.
-
- """))
-
-add_newdoc('numpy.core', 'nested_iters',
- """
- Create nditers for use in nested loops
-
- Create a tuple of `nditer` objects which iterate in nested loops over
- different axes of the op argument. The first iterator is used in the
- outermost loop, the last in the innermost loop. Advancing one will change
- the subsequent iterators to point at its new element.
-
- Parameters
- ----------
- op : ndarray or sequence of array_like
- The array(s) to iterate over.
-
- axes : list of list of int
- Each item is used as an "op_axes" argument to an nditer
-
- flags, op_flags, op_dtypes, order, casting, buffersize (optional)
- See `nditer` parameters of the same name
-
- Returns
- -------
- iters : tuple of nditer
- An nditer for each item in `axes`, outermost first
-
- See Also
- --------
- nditer
-
- Examples
- --------
-
- Basic usage. Note how y is the "flattened" version of
- [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified
- the first iter's axes as [1]
-
- >>> a = np.arange(12).reshape(2, 3, 2)
- >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
- >>> for x in i:
- ... print(i.multi_index)
- ... for y in j:
- ... print('', j.multi_index, y)
-
- (0,)
- (0, 0) 0
- (0, 1) 1
- (1, 0) 6
- (1, 1) 7
- (1,)
- (0, 0) 2
- (0, 1) 3
- (1, 0) 8
- (1, 1) 9
- (2,)
- (0, 0) 4
- (0, 1) 5
- (1, 0) 10
- (1, 1) 11
-
- """)
-
-add_newdoc('numpy.core', 'nditer', ('close',
- """
- close()
-
- Resolve all writeback semantics in writeable operands.
-
- See Also
- --------
-
- :ref:`nditer-context-manager`
-
- """))
-
-
-###############################################################################
-#
-# broadcast
-#
-###############################################################################
-
-add_newdoc('numpy.core', 'broadcast',
- """
- Produce an object that mimics broadcasting.
-
- Parameters
- ----------
- in1, in2, ... : array_like
- Input parameters.
-
- Returns
- -------
- b : broadcast object
- Broadcast the input parameters against one another, and
- return an object that encapsulates the result.
- Amongst others, it has ``shape`` and ``nd`` properties, and
- may be used as an iterator.
-
- See Also
- --------
- broadcast_arrays
- broadcast_to
-
- Examples
- --------
-
- Manually adding two vectors, using broadcasting:
-
- >>> x = np.array([[1], [2], [3]])
- >>> y = np.array([4, 5, 6])
- >>> b = np.broadcast(x, y)
-
- >>> out = np.empty(b.shape)
- >>> out.flat = [u+v for (u,v) in b]
- >>> out
- array([[ 5., 6., 7.],
- [ 6., 7., 8.],
- [ 7., 8., 9.]])
-
- Compare against built-in broadcasting:
-
- >>> x + y
- array([[5, 6, 7],
- [6, 7, 8],
- [7, 8, 9]])
-
- """)
-
-# attributes
-
-add_newdoc('numpy.core', 'broadcast', ('index',
- """
- current index in broadcasted result
-
- Examples
- --------
- >>> x = np.array([[1], [2], [3]])
- >>> y = np.array([4, 5, 6])
- >>> b = np.broadcast(x, y)
- >>> b.index
- 0
- >>> b.next(), b.next(), b.next()
- ((1, 4), (1, 5), (1, 6))
- >>> b.index
- 3
-
- """))
-
-add_newdoc('numpy.core', 'broadcast', ('iters',
- """
- tuple of iterators along ``self``'s "components."
-
- Returns a tuple of `numpy.flatiter` objects, one for each "component"
- of ``self``.
-
- See Also
- --------
- numpy.flatiter
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]])
- >>> b = np.broadcast(x, y)
- >>> row, col = b.iters
- >>> row.next(), col.next()
- (1, 4)
-
- """))
-
-add_newdoc('numpy.core', 'broadcast', ('ndim',
- """
- Number of dimensions of broadcasted result. Alias for `nd`.
-
- .. versionadded:: 1.12.0
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]])
- >>> b = np.broadcast(x, y)
- >>> b.ndim
- 2
-
- """))
-
-add_newdoc('numpy.core', 'broadcast', ('nd',
- """
- Number of dimensions of broadcasted result. For code intended for NumPy
- 1.12.0 and later the more consistent `ndim` is preferred.
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]])
- >>> b = np.broadcast(x, y)
- >>> b.nd
- 2
-
- """))
-
-add_newdoc('numpy.core', 'broadcast', ('numiter',
- """
- Number of iterators possessed by the broadcasted result.
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]])
- >>> b = np.broadcast(x, y)
- >>> b.numiter
- 2
-
- """))
-
-add_newdoc('numpy.core', 'broadcast', ('shape',
- """
- Shape of broadcasted result.
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]])
- >>> b = np.broadcast(x, y)
- >>> b.shape
- (3, 3)
-
- """))
-
-add_newdoc('numpy.core', 'broadcast', ('size',
- """
- Total size of broadcasted result.
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]])
- >>> b = np.broadcast(x, y)
- >>> b.size
- 9
-
- """))
-
-add_newdoc('numpy.core', 'broadcast', ('reset',
- """
- reset()
-
- Reset the broadcasted result's iterator(s).
-
- Parameters
- ----------
- None
-
- Returns
- -------
- None
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]]
- >>> b = np.broadcast(x, y)
- >>> b.index
- 0
- >>> b.next(), b.next(), b.next()
- ((1, 4), (2, 4), (3, 4))
- >>> b.index
- 3
- >>> b.reset()
- >>> b.index
- 0
-
- """))
-
-###############################################################################
-#
-# numpy functions
-#
-###############################################################################
-
-add_newdoc('numpy.core.multiarray', 'array',
- """
- array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
-
- Create an array.
-
- Parameters
- ----------
- object : array_like
- An array, any object exposing the array interface, an object whose
- __array__ method returns an array, or any (nested) sequence.
- dtype : data-type, optional
- The desired data-type for the array. If not given, then the type will
- be determined as the minimum type required to hold the objects in the
- sequence. This argument can only be used to 'upcast' the array. For
- downcasting, use the .astype(t) method.
- copy : bool, optional
- If true (default), then the object is copied. Otherwise, a copy will
- only be made if __array__ returns a copy, if obj is a nested sequence,
- or if a copy is needed to satisfy any of the other requirements
- (`dtype`, `order`, etc.).
- order : {'K', 'A', 'C', 'F'}, optional
- Specify the memory layout of the array. If object is not an array, the
- newly created array will be in C order (row major) unless 'F' is
- specified, in which case it will be in Fortran order (column major).
- If object is an array the following holds.
-
- ===== ========= ===================================================
- order no copy copy=True
- ===== ========= ===================================================
- 'K' unchanged F & C order preserved, otherwise most similar order
- 'A' unchanged F order if input is F and not C, otherwise C order
- 'C' C order C order
- 'F' F order F order
- ===== ========= ===================================================
-
- When ``copy=False`` and a copy is made for other reasons, the result is
- the same as if ``copy=True``, with some exceptions for `A`, see the
- Notes section. The default order is 'K'.
- subok : bool, optional
- If True, then sub-classes will be passed-through, otherwise
- the returned array will be forced to be a base-class array (default).
- ndmin : int, optional
- Specifies the minimum number of dimensions that the resulting
- array should have. Ones will be pre-pended to the shape as
- needed to meet this requirement.
-
- Returns
- -------
- out : ndarray
- An array object satisfying the specified requirements.
-
- See Also
- --------
- empty_like : Return an empty array with shape and type of input.
- ones_like : Return an array of ones with shape and type of input.
- zeros_like : Return an array of zeros with shape and type of input.
- full_like : Return a new array with shape of input filled with value.
- empty : Return a new uninitialized array.
- ones : Return a new array setting values to one.
- zeros : Return a new array setting values to zero.
- full : Return a new array of given shape filled with value.
-
-
- Notes
- -----
- When order is 'A' and `object` is an array in neither 'C' nor 'F' order,
- and a copy is forced by a change in dtype, then the order of the result is
- not necessarily 'C' as expected. This is likely a bug.
-
- Examples
- --------
- >>> np.array([1, 2, 3])
- array([1, 2, 3])
-
- Upcasting:
-
- >>> np.array([1, 2, 3.0])
- array([ 1., 2., 3.])
-
- More than one dimension:
-
- >>> np.array([[1, 2], [3, 4]])
- array([[1, 2],
- [3, 4]])
-
- Minimum dimensions 2:
-
- >>> np.array([1, 2, 3], ndmin=2)
- array([[1, 2, 3]])
-
- Type provided:
-
- >>> np.array([1, 2, 3], dtype=complex)
- array([ 1.+0.j, 2.+0.j, 3.+0.j])
-
- Data-type consisting of more than one element:
-
- >>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
- >>> x['a']
- array([1, 3])
-
- Creating an array from sub-classes:
-
- >>> np.array(np.mat('1 2; 3 4'))
- array([[1, 2],
- [3, 4]])
-
- >>> np.array(np.mat('1 2; 3 4'), subok=True)
- matrix([[1, 2],
- [3, 4]])
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'empty',
- """
- empty(shape, dtype=float, order='C')
-
- Return a new array of given shape and type, without initializing entries.
-
- Parameters
- ----------
- shape : int or tuple of int
- Shape of the empty array, e.g., ``(2, 3)`` or ``2``.
- dtype : data-type, optional
- Desired output data-type for the array, e.g, `numpy.int8`. Default is
- `numpy.float64`.
- order : {'C', 'F'}, optional, default: 'C'
- Whether to store multi-dimensional data in row-major
- (C-style) or column-major (Fortran-style) order in
- memory.
-
- Returns
- -------
- out : ndarray
- Array of uninitialized (arbitrary) data of the given shape, dtype, and
- order. Object arrays will be initialized to None.
-
- See Also
- --------
- empty_like : Return an empty array with shape and type of input.
- ones : Return a new array setting values to one.
- zeros : Return a new array setting values to zero.
- full : Return a new array of given shape filled with value.
-
-
- Notes
- -----
- `empty`, unlike `zeros`, does not set the array values to zero,
- and may therefore be marginally faster. On the other hand, it requires
- the user to manually set all the values in the array, and should be
- used with caution.
-
- Examples
- --------
- >>> np.empty([2, 2])
- array([[ -9.74499359e+001, 6.69583040e-309],
- [ 2.13182611e-314, 3.06959433e-309]]) #random
-
- >>> np.empty([2, 2], dtype=int)
- array([[-1073741821, -1067949133],
- [ 496041986, 19249760]]) #random
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'empty_like',
- """
- empty_like(prototype, dtype=None, order='K', subok=True)
-
- Return a new array with the same shape and type as a given array.
-
- Parameters
- ----------
- prototype : array_like
- The shape and data-type of `prototype` define these same attributes
- of the returned array.
- dtype : data-type, optional
- Overrides the data type of the result.
-
- .. versionadded:: 1.6.0
- order : {'C', 'F', 'A', or 'K'}, optional
- Overrides the memory layout of the result. 'C' means C-order,
- 'F' means F-order, 'A' means 'F' if ``prototype`` is Fortran
- contiguous, 'C' otherwise. 'K' means match the layout of ``prototype``
- as closely as possible.
-
- .. versionadded:: 1.6.0
- subok : bool, optional.
- If True, then the newly created array will use the sub-class
- type of 'a', otherwise it will be a base-class array. Defaults
- to True.
-
- Returns
- -------
- out : ndarray
- Array of uninitialized (arbitrary) data with the same
- shape and type as `prototype`.
-
- See Also
- --------
- ones_like : Return an array of ones with shape and type of input.
- zeros_like : Return an array of zeros with shape and type of input.
- full_like : Return a new array with shape of input filled with value.
- empty : Return a new uninitialized array.
-
- Notes
- -----
- This function does *not* initialize the returned array; to do that use
- `zeros_like` or `ones_like` instead. It may be marginally faster than
- the functions that do set the array values.
-
- Examples
- --------
- >>> a = ([1,2,3], [4,5,6]) # a is array-like
- >>> np.empty_like(a)
- array([[-1073741821, -1073741821, 3], #random
- [ 0, 0, -1073741821]])
- >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
- >>> np.empty_like(a)
- array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
- [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
-
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'scalar',
- """
- scalar(dtype, obj)
-
- Return a new scalar array of the given type initialized with obj.
-
- This function is meant mainly for pickle support. `dtype` must be a
- valid data-type descriptor. If `dtype` corresponds to an object
- descriptor, then `obj` can be any object, otherwise `obj` must be a
- string. If `obj` is not given, it will be interpreted as None for object
- type and as zeros for all other types.
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'zeros',
- """
- zeros(shape, dtype=float, order='C')
-
- Return a new array of given shape and type, filled with zeros.
-
- Parameters
- ----------
- shape : int or tuple of ints
- Shape of the new array, e.g., ``(2, 3)`` or ``2``.
- dtype : data-type, optional
- The desired data-type for the array, e.g., `numpy.int8`. Default is
- `numpy.float64`.
- order : {'C', 'F'}, optional, default: 'C'
- Whether to store multi-dimensional data in row-major
- (C-style) or column-major (Fortran-style) order in
- memory.
-
- Returns
- -------
- out : ndarray
- Array of zeros with the given shape, dtype, and order.
-
- See Also
- --------
- zeros_like : Return an array of zeros with shape and type of input.
- empty : Return a new uninitialized array.
- ones : Return a new array setting values to one.
- full : Return a new array of given shape filled with value.
-
- Examples
- --------
- >>> np.zeros(5)
- array([ 0., 0., 0., 0., 0.])
-
- >>> np.zeros((5,), dtype=int)
- array([0, 0, 0, 0, 0])
-
- >>> np.zeros((2, 1))
- array([[ 0.],
- [ 0.]])
-
- >>> s = (2,2)
- >>> np.zeros(s)
- array([[ 0., 0.],
- [ 0., 0.]])
-
- >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
- array([(0, 0), (0, 0)],
- dtype=[('x', '<i4'), ('y', '<i4')])
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'set_typeDict',
- """set_typeDict(dict)
-
- Set the internal dictionary that can look up an array type using a
- registered code.
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'fromstring',
- """
- fromstring(string, dtype=float, count=-1, sep='')
-
- A new 1-D array initialized from text data in a string.
-
- Parameters
- ----------
- string : str
- A string containing the data.
- dtype : data-type, optional
- The data type of the array; default: float. For binary input data,
- the data must be in exactly this format.
- count : int, optional
- Read this number of `dtype` elements from the data. If this is
- negative (the default), the count will be determined from the
- length of the data.
- sep : str, optional
- The string separating numbers in the data; extra whitespace between
- elements is also ignored.
-
- .. deprecated:: 1.14
- If this argument is not provided, `fromstring` falls back on the
- behaviour of `frombuffer` after encoding unicode string inputs as
- either utf-8 (python 3), or the default encoding (python 2).
-
- Returns
- -------
- arr : ndarray
- The constructed array.
-
- Raises
- ------
- ValueError
- If the string is not the correct size to satisfy the requested
- `dtype` and `count`.
-
- See Also
- --------
- frombuffer, fromfile, fromiter
-
- Examples
- --------
- >>> np.fromstring('1 2', dtype=int, sep=' ')
- array([1, 2])
- >>> np.fromstring('1, 2', dtype=int, sep=',')
- array([1, 2])
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'fromiter',
- """
- fromiter(iterable, dtype, count=-1)
-
- Create a new 1-dimensional array from an iterable object.
-
- Parameters
- ----------
- iterable : iterable object
- An iterable object providing data for the array.
- dtype : data-type
- The data-type of the returned array.
- count : int, optional
- The number of items to read from *iterable*. The default is -1,
- which means all data is read.
-
- Returns
- -------
- out : ndarray
- The output array.
-
- Notes
- -----
- Specify `count` to improve performance. It allows ``fromiter`` to
- pre-allocate the output array, instead of resizing it on demand.
-
- Examples
- --------
- >>> iterable = (x*x for x in range(5))
- >>> np.fromiter(iterable, float)
- array([ 0., 1., 4., 9., 16.])
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'fromfile',
- """
- fromfile(file, dtype=float, count=-1, sep='')
-
- Construct an array from data in a text or binary file.
-
- A highly efficient way of reading binary data with a known data-type,
- as well as parsing simply formatted text files. Data written using the
- `tofile` method can be read using this function.
-
- Parameters
- ----------
- file : file or str
- Open file object or filename.
- dtype : data-type
- Data type of the returned array.
- For binary files, it is used to determine the size and byte-order
- of the items in the file.
- count : int
- Number of items to read. ``-1`` means all items (i.e., the complete
- file).
- sep : str
- Separator between items if file is a text file.
- Empty ("") separator means the file should be treated as binary.
- Spaces (" ") in the separator match zero or more whitespace characters.
- A separator consisting only of spaces must match at least one
- whitespace.
-
- See also
- --------
- load, save
- ndarray.tofile
- loadtxt : More flexible way of loading data from a text file.
-
- Notes
- -----
- Do not rely on the combination of `tofile` and `fromfile` for
- data storage, as the binary files generated are are not platform
- independent. In particular, no byte-order or data-type information is
- saved. Data can be stored in the platform independent ``.npy`` format
- using `save` and `load` instead.
-
- Examples
- --------
- Construct an ndarray:
-
- >>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
- ... ('temp', float)])
- >>> x = np.zeros((1,), dtype=dt)
- >>> x['time']['min'] = 10; x['temp'] = 98.25
- >>> x
- array([((10, 0), 98.25)],
- dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
-
- Save the raw data to disk:
-
- >>> import os
- >>> fname = os.tmpnam()
- >>> x.tofile(fname)
-
- Read the raw data from disk:
-
- >>> np.fromfile(fname, dtype=dt)
- array([((10, 0), 98.25)],
- dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
-
- The recommended way to store and load data:
-
- >>> np.save(fname, x)
- >>> np.load(fname + '.npy')
- array([((10, 0), 98.25)],
- dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'frombuffer',
- """
- frombuffer(buffer, dtype=float, count=-1, offset=0)
-
- Interpret a buffer as a 1-dimensional array.
-
- Parameters
- ----------
- buffer : buffer_like
- An object that exposes the buffer interface.
- dtype : data-type, optional
- Data-type of the returned array; default: float.
- count : int, optional
- Number of items to read. ``-1`` means all data in the buffer.
- offset : int, optional
- Start reading the buffer from this offset (in bytes); default: 0.
-
- Notes
- -----
- If the buffer has data that is not in machine byte-order, this should
- be specified as part of the data-type, e.g.::
-
- >>> dt = np.dtype(int)
- >>> dt = dt.newbyteorder('>')
- >>> np.frombuffer(buf, dtype=dt)
-
- The data of the resulting array will not be byteswapped, but will be
- interpreted correctly.
-
- Examples
- --------
- >>> s = 'hello world'
- >>> np.frombuffer(s, dtype='S1', count=5, offset=6)
- array(['w', 'o', 'r', 'l', 'd'],
- dtype='|S1')
-
- >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8)
- array([1, 2], dtype=uint8)
- >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3)
- array([1, 2, 3], dtype=uint8)
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'concatenate',
- """
- concatenate((a1, a2, ...), axis=0, out=None)
-
- Join a sequence of arrays along an existing axis.
-
- Parameters
- ----------
- a1, a2, ... : sequence of array_like
- The arrays must have the same shape, except in the dimension
- corresponding to `axis` (the first, by default).
- axis : int, optional
- The axis along which the arrays will be joined. If axis is None,
- arrays are flattened before use. Default is 0.
- out : ndarray, optional
- If provided, the destination to place the result. The shape must be
- correct, matching that of what concatenate would have returned if no
- out argument were specified.
-
- Returns
- -------
- res : ndarray
- The concatenated array.
-
- See Also
- --------
- ma.concatenate : Concatenate function that preserves input masks.
- array_split : Split an array into multiple sub-arrays of equal or
- near-equal size.
- split : Split array into a list of multiple sub-arrays of equal size.
- hsplit : Split array into multiple sub-arrays horizontally (column wise)
- vsplit : Split array into multiple sub-arrays vertically (row wise)
- dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
- stack : Stack a sequence of arrays along a new axis.
- hstack : Stack arrays in sequence horizontally (column wise)
- vstack : Stack arrays in sequence vertically (row wise)
- dstack : Stack arrays in sequence depth wise (along third dimension)
-
- Notes
- -----
- When one or more of the arrays to be concatenated is a MaskedArray,
- this function will return a MaskedArray object instead of an ndarray,
- but the input masks are *not* preserved. In cases where a MaskedArray
- is expected as input, use the ma.concatenate function from the masked
- array module instead.
-
- Examples
- --------
- >>> a = np.array([[1, 2], [3, 4]])
- >>> b = np.array([[5, 6]])
- >>> np.concatenate((a, b), axis=0)
- array([[1, 2],
- [3, 4],
- [5, 6]])
- >>> np.concatenate((a, b.T), axis=1)
- array([[1, 2, 5],
- [3, 4, 6]])
- >>> np.concatenate((a, b), axis=None)
- array([1, 2, 3, 4, 5, 6])
-
- This function will not preserve masking of MaskedArray inputs.
-
- >>> a = np.ma.arange(3)
- >>> a[1] = np.ma.masked
- >>> b = np.arange(2, 5)
- >>> a
- masked_array(data = [0 -- 2],
- mask = [False True False],
- fill_value = 999999)
- >>> b
- array([2, 3, 4])
- >>> np.concatenate([a, b])
- masked_array(data = [0 1 2 2 3 4],
- mask = False,
- fill_value = 999999)
- >>> np.ma.concatenate([a, b])
- masked_array(data = [0 -- 2 2 3 4],
- mask = [False True False False False False],
- fill_value = 999999)
-
- """)
-
-add_newdoc('numpy.core', 'inner',
- """
- inner(a, b)
-
- Inner product of two arrays.
-
- Ordinary inner product of vectors for 1-D arrays (without complex
- conjugation), in higher dimensions a sum product over the last axes.
-
- Parameters
- ----------
- a, b : array_like
- If `a` and `b` are nonscalar, their last dimensions must match.
-
- Returns
- -------
- out : ndarray
- `out.shape = a.shape[:-1] + b.shape[:-1]`
-
- Raises
- ------
- ValueError
- If the last dimension of `a` and `b` has different size.
-
- See Also
- --------
- tensordot : Sum products over arbitrary axes.
- dot : Generalised matrix product, using second last dimension of `b`.
- einsum : Einstein summation convention.
-
- Notes
- -----
- For vectors (1-D arrays) it computes the ordinary inner-product::
-
- np.inner(a, b) = sum(a[:]*b[:])
-
- More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`::
-
- np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
-
- or explicitly::
-
- np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
- = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])
-
- In addition `a` or `b` may be scalars, in which case::
-
- np.inner(a,b) = a*b
-
- Examples
- --------
- Ordinary inner product for vectors:
-
- >>> a = np.array([1,2,3])
- >>> b = np.array([0,1,0])
- >>> np.inner(a, b)
- 2
-
- A multidimensional example:
-
- >>> a = np.arange(24).reshape((2,3,4))
- >>> b = np.arange(4)
- >>> np.inner(a, b)
- array([[ 14, 38, 62],
- [ 86, 110, 134]])
-
- An example where `b` is a scalar:
-
- >>> np.inner(np.eye(2), 7)
- array([[ 7., 0.],
- [ 0., 7.]])
-
- """)
-
-add_newdoc('numpy.core', 'fastCopyAndTranspose',
- """_fastCopyAndTranspose(a)""")
-
-add_newdoc('numpy.core.multiarray', 'correlate',
- """cross_correlate(a,v, mode=0)""")
-
-add_newdoc('numpy.core.multiarray', 'arange',
- """
- arange([start,] stop[, step,], dtype=None)
-
- Return evenly spaced values within a given interval.
-
- Values are generated within the half-open interval ``[start, stop)``
- (in other words, the interval including `start` but excluding `stop`).
- For integer arguments the function is equivalent to the Python built-in
- `range <https://docs.python.org/library/functions.html#func-range>`_ function,
- but returns an ndarray rather than a list.
-
- When using a non-integer step, such as 0.1, the results will often not
- be consistent. It is better to use ``linspace`` for these cases.
-
- Parameters
- ----------
- start : number, optional
- Start of interval. The interval includes this value. The default
- start value is 0.
- stop : number
- End of interval. The interval does not include this value, except
- in some cases where `step` is not an integer and floating point
- round-off affects the length of `out`.
- step : number, optional
- Spacing between values. For any output `out`, this is the distance
- between two adjacent values, ``out[i+1] - out[i]``. The default
- step size is 1. If `step` is specified as a position argument,
- `start` must also be given.
- dtype : dtype
- The type of the output array. If `dtype` is not given, infer the data
- type from the other input arguments.
-
- Returns
- -------
- arange : ndarray
- Array of evenly spaced values.
-
- For floating point arguments, the length of the result is
- ``ceil((stop - start)/step)``. Because of floating point overflow,
- this rule may result in the last element of `out` being greater
- than `stop`.
-
- See Also
- --------
- linspace : Evenly spaced numbers with careful handling of endpoints.
- ogrid: Arrays of evenly spaced numbers in N-dimensions.
- mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
-
- Examples
- --------
- >>> np.arange(3)
- array([0, 1, 2])
- >>> np.arange(3.0)
- array([ 0., 1., 2.])
- >>> np.arange(3,7)
- array([3, 4, 5, 6])
- >>> np.arange(3,7,2)
- array([3, 5])
-
- """)
-
-add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version',
- """_get_ndarray_c_version()
-
- Return the compile time NDARRAY_VERSION number.
-
- """)
-
-add_newdoc('numpy.core.multiarray', '_reconstruct',
- """_reconstruct(subtype, shape, dtype)
-
- Construct an empty array. Used by Pickles.
-
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'set_string_function',
- """
- set_string_function(f, repr=1)
-
- Internal method to set a function to be used when pretty printing arrays.
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'set_numeric_ops',
- """
- set_numeric_ops(op1=func1, op2=func2, ...)
-
- Set numerical operators for array objects.
-
- Parameters
- ----------
- op1, op2, ... : callable
- Each ``op = func`` pair describes an operator to be replaced.
- For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace
- addition by modulus 5 addition.
-
- Returns
- -------
- saved_ops : list of callables
- A list of all operators, stored before making replacements.
-
- Notes
- -----
- .. WARNING::
- Use with care! Incorrect usage may lead to memory errors.
-
- A function replacing an operator cannot make use of that operator.
- For example, when replacing add, you may not use ``+``. Instead,
- directly call ufuncs.
-
- Examples
- --------
- >>> def add_mod5(x, y):
- ... return np.add(x, y) % 5
- ...
- >>> old_funcs = np.set_numeric_ops(add=add_mod5)
-
- >>> x = np.arange(12).reshape((3, 4))
- >>> x + x
- array([[0, 2, 4, 1],
- [3, 0, 2, 4],
- [1, 3, 0, 2]])
-
- >>> ignore = np.set_numeric_ops(**old_funcs) # restore operators
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'where',
- """
- where(condition, [x, y])
-
- Return elements chosen from `x` or `y` depending on `condition`.
-
- .. note::
- When only `condition` is provided, this function is a shorthand for
- ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
- preferred, as it behaves correctly for subclasses. The rest of this
- documentation covers only the case where all three arguments are
- provided.
-
- Parameters
- ----------
- condition : array_like, bool
- Where True, yield `x`, otherwise yield `y`.
- x, y : array_like
- Values from which to choose. `x`, `y` and `condition` need to be
- broadcastable to some shape.
-
- Returns
- -------
- out : ndarray
- An array with elements from `x` where `condition` is True, and elements
- from `y` elsewhere.
-
- See Also
- --------
- choose
- nonzero : The function that is called when x and y are omitted
-
- Notes
- -----
- If all the arrays are 1-D, `where` is equivalent to::
-
- [xv if c else yv
- for c, xv, yv in zip(condition, x, y)]
-
- Examples
- --------
- >>> a = np.arange(10)
- >>> a
- array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
- >>> np.where(a < 5, a, 10*a)
- array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
-
- This can be used on multidimensional arrays too:
-
- >>> np.where([[True, False], [True, True]],
- ... [[1, 2], [3, 4]],
- ... [[9, 8], [7, 6]])
- array([[1, 8],
- [3, 4]])
-
- The shapes of x, y, and the condition are broadcast together:
-
- >>> x, y = np.ogrid[:3, :4]
- >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
- array([[10, 0, 0, 0],
- [10, 11, 1, 1],
- [10, 11, 12, 2]])
-
- >>> a = np.array([[0, 1, 2],
- ... [0, 2, 4],
- ... [0, 3, 6]])
- >>> np.where(a < 4, a, -1) # -1 is broadcast
- array([[ 0, 1, 2],
- [ 0, 2, -1],
- [ 0, 3, -1]])
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'lexsort',
- """
- lexsort(keys, axis=-1)
-
- Perform an indirect stable sort using a sequence of keys.
-
- Given multiple sorting keys, which can be interpreted as columns in a
- spreadsheet, lexsort returns an array of integer indices that describes
- the sort order by multiple columns. The last key in the sequence is used
- for the primary sort order, the second-to-last key for the secondary sort
- order, and so on. The keys argument must be a sequence of objects that
- can be converted to arrays of the same shape. If a 2D array is provided
- for the keys argument, it's rows are interpreted as the sorting keys and
- sorting is according to the last row, second last row etc.
-
- Parameters
- ----------
- keys : (k, N) array or tuple containing k (N,)-shaped sequences
- The `k` different "columns" to be sorted. The last column (or row if
- `keys` is a 2D array) is the primary sort key.
- axis : int, optional
- Axis to be indirectly sorted. By default, sort over the last axis.
-
- Returns
- -------
- indices : (N,) ndarray of ints
- Array of indices that sort the keys along the specified axis.
-
- See Also
- --------
- argsort : Indirect sort.
- ndarray.sort : In-place sort.
- sort : Return a sorted copy of an array.
-
- Examples
- --------
- Sort names: first by surname, then by name.
-
- >>> surnames = ('Hertz', 'Galilei', 'Hertz')
- >>> first_names = ('Heinrich', 'Galileo', 'Gustav')
- >>> ind = np.lexsort((first_names, surnames))
- >>> ind
- array([1, 2, 0])
-
- >>> [surnames[i] + ", " + first_names[i] for i in ind]
- ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
-
- Sort two columns of numbers:
-
- >>> a = [1,5,1,4,3,4,4] # First column
- >>> b = [9,4,0,4,0,2,1] # Second column
- >>> ind = np.lexsort((b,a)) # Sort by a, then by b
- >>> print(ind)
- [2 0 4 6 5 3 1]
-
- >>> [(a[i],b[i]) for i in ind]
- [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
-
- Note that sorting is first according to the elements of ``a``.
- Secondary sorting is according to the elements of ``b``.
-
- A normal ``argsort`` would have yielded:
-
- >>> [(a[i],b[i]) for i in np.argsort(a)]
- [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]
-
- Structured arrays are sorted lexically by ``argsort``:
-
- >>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
- ... dtype=np.dtype([('x', int), ('y', int)]))
-
- >>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
- array([2, 0, 4, 6, 5, 3, 1])
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'can_cast',
- """
- can_cast(from_, to, casting='safe')
-
- Returns True if cast between data types can occur according to the
- casting rule. If from is a scalar or array scalar, also returns
- True if the scalar value can be cast without overflow or truncation
- to an integer.
-
- Parameters
- ----------
- from_ : dtype, dtype specifier, scalar, or array
- Data type, scalar, or array to cast from.
- to : dtype or dtype specifier
- Data type to cast to.
- casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
- Controls what kind of data casting may occur.
-
- * 'no' means the data types should not be cast at all.
- * 'equiv' means only byte-order changes are allowed.
- * 'safe' means only casts which can preserve values are allowed.
- * 'same_kind' means only safe casts or casts within a kind,
- like float64 to float32, are allowed.
- * 'unsafe' means any data conversions may be done.
-
- Returns
- -------
- out : bool
- True if cast can occur according to the casting rule.
-
- Notes
- -----
- Starting in NumPy 1.9, can_cast function now returns False in 'safe'
- casting mode for integer/float dtype and string dtype if the string dtype
- length is not long enough to store the max integer/float value converted
- to a string. Previously can_cast in 'safe' mode returned True for
- integer/float dtype and a string dtype of any length.
-
- See also
- --------
- dtype, result_type
-
- Examples
- --------
- Basic examples
-
- >>> np.can_cast(np.int32, np.int64)
- True
- >>> np.can_cast(np.float64, complex)
- True
- >>> np.can_cast(complex, float)
- False
-
- >>> np.can_cast('i8', 'f8')
- True
- >>> np.can_cast('i8', 'f4')
- False
- >>> np.can_cast('i4', 'S4')
- False
-
- Casting scalars
-
- >>> np.can_cast(100, 'i1')
- True
- >>> np.can_cast(150, 'i1')
- False
- >>> np.can_cast(150, 'u1')
- True
-
- >>> np.can_cast(3.5e100, np.float32)
- False
- >>> np.can_cast(1000.0, np.float32)
- True
-
- Array scalar checks the value, array does not
-
- >>> np.can_cast(np.array(1000.0), np.float32)
- True
- >>> np.can_cast(np.array([1000.0]), np.float32)
- False
-
- Using the casting rules
-
- >>> np.can_cast('i8', 'i8', 'no')
- True
- >>> np.can_cast('<i8', '>i8', 'no')
- False
-
- >>> np.can_cast('<i8', '>i8', 'equiv')
- True
- >>> np.can_cast('<i4', '>i8', 'equiv')
- False
-
- >>> np.can_cast('<i4', '>i8', 'safe')
- True
- >>> np.can_cast('<i8', '>i4', 'safe')
- False
-
- >>> np.can_cast('<i8', '>i4', 'same_kind')
- True
- >>> np.can_cast('<i8', '>u4', 'same_kind')
- False
-
- >>> np.can_cast('<i8', '>u4', 'unsafe')
- True
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'promote_types',
- """
- promote_types(type1, type2)
-
- Returns the data type with the smallest size and smallest scalar
- kind to which both ``type1`` and ``type2`` may be safely cast.
- The returned data type is always in native byte order.
-
- This function is symmetric, but rarely associative.
-
- Parameters
- ----------
- type1 : dtype or dtype specifier
- First data type.
- type2 : dtype or dtype specifier
- Second data type.
-
- Returns
- -------
- out : dtype
- The promoted data type.
-
- Notes
- -----
- .. versionadded:: 1.6.0
-
- Starting in NumPy 1.9, promote_types function now returns a valid string
- length when given an integer or float dtype as one argument and a string
- dtype as another argument. Previously it always returned the input string
- dtype, even if it wasn't long enough to store the max integer/float value
- converted to a string.
-
- See Also
- --------
- result_type, dtype, can_cast
-
- Examples
- --------
- >>> np.promote_types('f4', 'f8')
- dtype('float64')
-
- >>> np.promote_types('i8', 'f4')
- dtype('float64')
-
- >>> np.promote_types('>i8', '<c8')
- dtype('complex128')
-
- >>> np.promote_types('i4', 'S8')
- dtype('S11')
-
- An example of a non-associative case:
-
- >>> p = np.promote_types
- >>> p('S', p('i1', 'u1'))
- dtype('S6')
- >>> p(p('S', 'i1'), 'u1')
- dtype('S4')
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'min_scalar_type',
- """
- min_scalar_type(a)
-
- For scalar ``a``, returns the data type with the smallest size
- and smallest scalar kind which can hold its value. For non-scalar
- array ``a``, returns the vector's dtype unmodified.
-
- Floating point values are not demoted to integers,
- and complex values are not demoted to floats.
-
- Parameters
- ----------
- a : scalar or array_like
- The value whose minimal data type is to be found.
-
- Returns
- -------
- out : dtype
- The minimal data type.
-
- Notes
- -----
- .. versionadded:: 1.6.0
-
- See Also
- --------
- result_type, promote_types, dtype, can_cast
-
- Examples
- --------
- >>> np.min_scalar_type(10)
- dtype('uint8')
-
- >>> np.min_scalar_type(-260)
- dtype('int16')
-
- >>> np.min_scalar_type(3.1)
- dtype('float16')
-
- >>> np.min_scalar_type(1e50)
- dtype('float64')
-
- >>> np.min_scalar_type(np.arange(4,dtype='f8'))
- dtype('float64')
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'result_type',
- """
- result_type(*arrays_and_dtypes)
-
- Returns the type that results from applying the NumPy
- type promotion rules to the arguments.
-
- Type promotion in NumPy works similarly to the rules in languages
- like C++, with some slight differences. When both scalars and
- arrays are used, the array's type takes precedence and the actual value
- of the scalar is taken into account.
-
- For example, calculating 3*a, where a is an array of 32-bit floats,
- intuitively should result in a 32-bit float output. If the 3 is a
- 32-bit integer, the NumPy rules indicate it can't convert losslessly
- into a 32-bit float, so a 64-bit float should be the result type.
- By examining the value of the constant, '3', we see that it fits in
- an 8-bit integer, which can be cast losslessly into the 32-bit float.
-
- Parameters
- ----------
- arrays_and_dtypes : list of arrays and dtypes
- The operands of some operation whose result type is needed.
-
- Returns
- -------
- out : dtype
- The result type.
-
- See also
- --------
- dtype, promote_types, min_scalar_type, can_cast
-
- Notes
- -----
- .. versionadded:: 1.6.0
-
- The specific algorithm used is as follows.
-
- Categories are determined by first checking which of boolean,
- integer (int/uint), or floating point (float/complex) the maximum
- kind of all the arrays and the scalars are.
-
- If there are only scalars or the maximum category of the scalars
- is higher than the maximum category of the arrays,
- the data types are combined with :func:`promote_types`
- to produce the return value.
-
- Otherwise, `min_scalar_type` is called on each array, and
- the resulting data types are all combined with :func:`promote_types`
- to produce the return value.
-
- The set of int values is not a subset of the uint values for types
- with the same number of bits, something not reflected in
- :func:`min_scalar_type`, but handled as a special case in `result_type`.
-
- Examples
- --------
- >>> np.result_type(3, np.arange(7, dtype='i1'))
- dtype('int8')
-
- >>> np.result_type('i4', 'c8')
- dtype('complex128')
-
- >>> np.result_type(3.0, -2)
- dtype('float64')
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'newbuffer',
- """
- newbuffer(size)
-
- Return a new uninitialized buffer object.
-
- Parameters
- ----------
- size : int
- Size in bytes of returned buffer object.
-
- Returns
- -------
- newbuffer : buffer object
- Returned, uninitialized buffer object of `size` bytes.
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'getbuffer',
- """
- getbuffer(obj [,offset[, size]])
-
- Create a buffer object from the given object referencing a slice of
- length size starting at offset.
-
- Default is the entire buffer. A read-write buffer is attempted followed
- by a read-only buffer.
-
- Parameters
- ----------
- obj : object
-
- offset : int, optional
-
- size : int, optional
-
- Returns
- -------
- buffer_obj : buffer
-
- Examples
- --------
- >>> buf = np.getbuffer(np.ones(5), 1, 3)
- >>> len(buf)
- 3
- >>> buf[0]
- '\\x00'
- >>> buf
- <read-write buffer for 0x8af1e70, size 3, offset 1 at 0x8ba4ec0>
-
- """)
-
-add_newdoc('numpy.core', 'dot',
- """
- dot(a, b, out=None)
-
- Dot product of two arrays. Specifically,
-
- - If both `a` and `b` are 1-D arrays, it is inner product of vectors
- (without complex conjugation).
-
- - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
- but using :func:`matmul` or ``a @ b`` is preferred.
-
- - If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply`
- and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred.
-
- - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
- the last axis of `a` and `b`.
-
- - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
- sum product over the last axis of `a` and the second-to-last axis of `b`::
-
- dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
-
- Parameters
- ----------
- a : array_like
- First argument.
- b : array_like
- Second argument.
- out : ndarray, optional
- Output argument. This must have the exact kind that would be returned
- if it was not used. In particular, it must have the right type, must be
- C-contiguous, and its dtype must be the dtype that would be returned
- for `dot(a,b)`. This is a performance feature. Therefore, if these
- conditions are not met, an exception is raised, instead of attempting
- to be flexible.
-
- Returns
- -------
- output : ndarray
- Returns the dot product of `a` and `b`. If `a` and `b` are both
- scalars or both 1-D arrays then a scalar is returned; otherwise
- an array is returned.
- If `out` is given, then it is returned.
-
- Raises
- ------
- ValueError
- If the last dimension of `a` is not the same size as
- the second-to-last dimension of `b`.
-
- See Also
- --------
- vdot : Complex-conjugating dot product.
- tensordot : Sum products over arbitrary axes.
- einsum : Einstein summation convention.
- matmul : '@' operator as method with out parameter.
-
- Examples
- --------
- >>> np.dot(3, 4)
- 12
-
- Neither argument is complex-conjugated:
-
- >>> np.dot([2j, 3j], [2j, 3j])
- (-13+0j)
-
- For 2-D arrays it is the matrix product:
-
- >>> a = [[1, 0], [0, 1]]
- >>> b = [[4, 1], [2, 2]]
- >>> np.dot(a, b)
- array([[4, 1],
- [2, 2]])
-
- >>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
- >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
- >>> np.dot(a, b)[2,3,2,1,2,2]
- 499128
- >>> sum(a[2,3,2,:] * b[1,2,:,2])
- 499128
-
- """)
-
-add_newdoc('numpy.core', 'matmul',
- """
- matmul(a, b, out=None)
-
- Matrix product of two arrays.
-
- The behavior depends on the arguments in the following way.
-
- - If both arguments are 2-D they are multiplied like conventional
- matrices.
- - If either argument is N-D, N > 2, it is treated as a stack of
- matrices residing in the last two indexes and broadcast accordingly.
- - If the first argument is 1-D, it is promoted to a matrix by
- prepending a 1 to its dimensions. After matrix multiplication
- the prepended 1 is removed.
- - If the second argument is 1-D, it is promoted to a matrix by
- appending a 1 to its dimensions. After matrix multiplication
- the appended 1 is removed.
-
- Multiplication by a scalar is not allowed, use ``*`` instead. Note that
- multiplying a stack of matrices with a vector will result in a stack of
- vectors, but matmul will not recognize it as such.
-
- ``matmul`` differs from ``dot`` in two important ways.
-
- - Multiplication by scalars is not allowed.
- - Stacks of matrices are broadcast together as if the matrices
- were elements.
-
- .. warning::
- This function is preliminary and included in NumPy 1.10.0 for testing
- and documentation. Its semantics will not change, but the number and
- order of the optional arguments will.
-
- .. versionadded:: 1.10.0
-
- Parameters
- ----------
- a : array_like
- First argument.
- b : array_like
- Second argument.
- out : ndarray, optional
- Output argument. This must have the exact kind that would be returned
- if it was not used. In particular, it must have the right type, must be
- C-contiguous, and its dtype must be the dtype that would be returned
- for `dot(a,b)`. This is a performance feature. Therefore, if these
- conditions are not met, an exception is raised, instead of attempting
- to be flexible.
-
- Returns
- -------
- output : ndarray
- Returns the dot product of `a` and `b`. If `a` and `b` are both
- 1-D arrays then a scalar is returned; otherwise an array is
- returned. If `out` is given, then it is returned.
-
- Raises
- ------
- ValueError
- If the last dimension of `a` is not the same size as
- the second-to-last dimension of `b`.
-
- If scalar value is passed.
-
- See Also
- --------
- vdot : Complex-conjugating dot product.
- tensordot : Sum products over arbitrary axes.
- einsum : Einstein summation convention.
- dot : alternative matrix product with different broadcasting rules.
-
- Notes
- -----
- The matmul function implements the semantics of the `@` operator introduced
- in Python 3.5 following PEP465.
-
- Examples
- --------
- For 2-D arrays it is the matrix product:
-
- >>> a = [[1, 0], [0, 1]]
- >>> b = [[4, 1], [2, 2]]
- >>> np.matmul(a, b)
- array([[4, 1],
- [2, 2]])
-
- For 2-D mixed with 1-D, the result is the usual.
-
- >>> a = [[1, 0], [0, 1]]
- >>> b = [1, 2]
- >>> np.matmul(a, b)
- array([1, 2])
- >>> np.matmul(b, a)
- array([1, 2])
-
-
- Broadcasting is conventional for stacks of arrays
-
- >>> a = np.arange(2*2*4).reshape((2,2,4))
- >>> b = np.arange(2*2*4).reshape((2,4,2))
- >>> np.matmul(a,b).shape
- (2, 2, 2)
- >>> np.matmul(a,b)[0,1,1]
- 98
- >>> sum(a[0,1,:] * b[0,:,1])
- 98
-
- Vector, vector returns the scalar inner product, but neither argument
- is complex-conjugated:
-
- >>> np.matmul([2j, 3j], [2j, 3j])
- (-13+0j)
-
- Scalar multiplication raises an error.
-
- >>> np.matmul([1,2], 3)
- Traceback (most recent call last):
- ...
- ValueError: Scalar operands are not allowed, use '*' instead
-
- """)
-
-add_newdoc('numpy.core', 'vdot',
- """
- vdot(a, b)
-
- Return the dot product of two vectors.
-
- The vdot(`a`, `b`) function handles complex numbers differently than
- dot(`a`, `b`). If the first argument is complex the complex conjugate
- of the first argument is used for the calculation of the dot product.
-
- Note that `vdot` handles multidimensional arrays differently than `dot`:
- it does *not* perform a matrix product, but flattens input arguments
- to 1-D vectors first. Consequently, it should only be used for vectors.
-
- Parameters
- ----------
- a : array_like
- If `a` is complex the complex conjugate is taken before calculation
- of the dot product.
- b : array_like
- Second argument to the dot product.
-
- Returns
- -------
- output : ndarray
- Dot product of `a` and `b`. Can be an int, float, or
- complex depending on the types of `a` and `b`.
-
- See Also
- --------
- dot : Return the dot product without using the complex conjugate of the
- first argument.
-
- Examples
- --------
- >>> a = np.array([1+2j,3+4j])
- >>> b = np.array([5+6j,7+8j])
- >>> np.vdot(a, b)
- (70-8j)
- >>> np.vdot(b, a)
- (70+8j)
-
- Note that higher-dimensional arrays are flattened!
-
- >>> a = np.array([[1, 4], [5, 6]])
- >>> b = np.array([[4, 1], [2, 2]])
- >>> np.vdot(a, b)
- 30
- >>> np.vdot(b, a)
- 30
- >>> 1*4 + 4*1 + 5*2 + 6*2
- 30
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'c_einsum',
- """
- c_einsum(subscripts, *operands, out=None, dtype=None, order='K',
- casting='safe')
-
- *This documentation shadows that of the native python implementation of the `einsum` function,
- except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.*
-
- Evaluates the Einstein summation convention on the operands.
-
- Using the Einstein summation convention, many common multi-dimensional,
- linear algebraic array operations can be represented in a simple fashion.
- In *implicit* mode `einsum` computes these values.
-
- In *explicit* mode, `einsum` provides further flexibility to compute
- other array operations that might not be considered classical Einstein
- summation operations, by disabling, or forcing summation over specified
- subscript labels.
-
- See the notes and examples for clarification.
-
- Parameters
- ----------
- subscripts : str
- Specifies the subscripts for summation as comma separated list of
- subscript labels. An implicit (classical Einstein summation)
- calculation is performed unless the explicit indicator '->' is
- included as well as subscript labels of the precise output form.
- operands : list of array_like
- These are the arrays for the operation.
- out : ndarray, optional
- If provided, the calculation is done into this array.
- dtype : {data-type, None}, optional
- If provided, forces the calculation to use the data type specified.
- Note that you may have to also give a more liberal `casting`
- parameter to allow the conversions. Default is None.
- order : {'C', 'F', 'A', 'K'}, optional
- Controls the memory layout of the output. 'C' means it should
- be C contiguous. 'F' means it should be Fortran contiguous,
- 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
- 'K' means it should be as close to the layout as the inputs as
- is possible, including arbitrarily permuted axes.
- Default is 'K'.
- casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
- Controls what kind of data casting may occur. Setting this to
- 'unsafe' is not recommended, as it can adversely affect accumulations.
-
- * 'no' means the data types should not be cast at all.
- * 'equiv' means only byte-order changes are allowed.
- * 'safe' means only casts which can preserve values are allowed.
- * 'same_kind' means only safe casts or casts within a kind,
- like float64 to float32, are allowed.
- * 'unsafe' means any data conversions may be done.
-
- Default is 'safe'.
- optimize : {False, True, 'greedy', 'optimal'}, optional
- Controls if intermediate optimization should occur. No optimization
- will occur if False and True will default to the 'greedy' algorithm.
- Also accepts an explicit contraction list from the ``np.einsum_path``
- function. See ``np.einsum_path`` for more details. Defaults to False.
-
- Returns
- -------
- output : ndarray
- The calculation based on the Einstein summation convention.
-
- See Also
- --------
- einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
-
- Notes
- -----
- .. versionadded:: 1.6.0
-
- The Einstein summation convention can be used to compute
- many multi-dimensional, linear algebraic array operations. `einsum`
- provides a succinct way of representing these.
-
- A non-exhaustive list of these operations,
- which can be computed by `einsum`, is shown below along with examples:
-
- * Trace of an array, :py:func:`numpy.trace`.
- * Return a diagonal, :py:func:`numpy.diag`.
- * Array axis summations, :py:func:`numpy.sum`.
- * Transpositions and permutations, :py:func:`numpy.transpose`.
- * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
- * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
- * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
- * Tensor contractions, :py:func:`numpy.tensordot`.
- * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
-
- The subscripts string is a comma-separated list of subscript labels,
- where each label refers to a dimension of the corresponding operand.
- Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
- is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
- appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
- view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
- describes traditional matrix multiplication and is equivalent to
- :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
- operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
- to :py:func:`np.trace(a) <numpy.trace>`.
-
- In *implicit mode*, the chosen subscripts are important
- since the axes of the output are reordered alphabetically. This
- means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
- ``np.einsum('ji', a)`` takes its transpose. Additionally,
- ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
- ``np.einsum('ij,jh', a, b)`` returns the transpose of the
- multiplication since subscript 'h' precedes subscript 'i'.
-
- In *explicit mode* the output can be directly controlled by
- specifying output subscript labels. This requires the
- identifier '->' as well as the list of output subscript labels.
- This feature increases the flexibility of the function since
- summing can be disabled or forced when required. The call
- ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
- and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
- The difference is that `einsum` does not allow broadcasting by default.
- Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
- order of the output subscript labels and therefore returns matrix
- multiplication, unlike the example above in implicit mode.
-
- To enable and control broadcasting, use an ellipsis. Default
- NumPy-style broadcasting is done by adding an ellipsis
- to the left of each term, like ``np.einsum('...ii->...i', a)``.
- To take the trace along the first and last axes,
- you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
- product with the left-most indices instead of rightmost, one can do
- ``np.einsum('ij...,jk...->ik...', a, b)``.
-
- When there is only one operand, no axes are summed, and no output
- parameter is provided, a view into the operand is returned instead
- of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
- produces a view (changed in version 1.10.0).
-
- `einsum` also provides an alternative way to provide the subscripts
- and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
- If the output shape is not provided in this format `einsum` will be
- calculated in implicit mode, otherwise it will be performed explicitly.
- The examples below have corresponding `einsum` calls with the two
- parameter methods.
-
- .. versionadded:: 1.10.0
-
- Views returned from einsum are now writeable whenever the input array
- is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
- have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
- and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
- of a 2D array.
-
- Examples
- --------
- >>> a = np.arange(25).reshape(5,5)
- >>> b = np.arange(5)
- >>> c = np.arange(6).reshape(2,3)
-
- Trace of a matrix:
-
- >>> np.einsum('ii', a)
- 60
- >>> np.einsum(a, [0,0])
- 60
- >>> np.trace(a)
- 60
-
- Extract the diagonal (requires explicit form):
-
- >>> np.einsum('ii->i', a)
- array([ 0, 6, 12, 18, 24])
- >>> np.einsum(a, [0,0], [0])
- array([ 0, 6, 12, 18, 24])
- >>> np.diag(a)
- array([ 0, 6, 12, 18, 24])
-
- Sum over an axis (requires explicit form):
-
- >>> np.einsum('ij->i', a)
- array([ 10, 35, 60, 85, 110])
- >>> np.einsum(a, [0,1], [0])
- array([ 10, 35, 60, 85, 110])
- >>> np.sum(a, axis=1)
- array([ 10, 35, 60, 85, 110])
-
- For higher dimensional arrays summing a single axis can be done with ellipsis:
-
- >>> np.einsum('...j->...', a)
- array([ 10, 35, 60, 85, 110])
- >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
- array([ 10, 35, 60, 85, 110])
-
- Compute a matrix transpose, or reorder any number of axes:
-
- >>> np.einsum('ji', c)
- array([[0, 3],
- [1, 4],
- [2, 5]])
- >>> np.einsum('ij->ji', c)
- array([[0, 3],
- [1, 4],
- [2, 5]])
- >>> np.einsum(c, [1,0])
- array([[0, 3],
- [1, 4],
- [2, 5]])
- >>> np.transpose(c)
- array([[0, 3],
- [1, 4],
- [2, 5]])
-
- Vector inner products:
-
- >>> np.einsum('i,i', b, b)
- 30
- >>> np.einsum(b, [0], b, [0])
- 30
- >>> np.inner(b,b)
- 30
-
- Matrix vector multiplication:
-
- >>> np.einsum('ij,j', a, b)
- array([ 30, 80, 130, 180, 230])
- >>> np.einsum(a, [0,1], b, [1])
- array([ 30, 80, 130, 180, 230])
- >>> np.dot(a, b)
- array([ 30, 80, 130, 180, 230])
- >>> np.einsum('...j,j', a, b)
- array([ 30, 80, 130, 180, 230])
-
- Broadcasting and scalar multiplication:
-
- >>> np.einsum('..., ...', 3, c)
- array([[ 0, 3, 6],
- [ 9, 12, 15]])
- >>> np.einsum(',ij', 3, c)
- array([[ 0, 3, 6],
- [ 9, 12, 15]])
- >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
- array([[ 0, 3, 6],
- [ 9, 12, 15]])
- >>> np.multiply(3, c)
- array([[ 0, 3, 6],
- [ 9, 12, 15]])
-
- Vector outer product:
-
- >>> np.einsum('i,j', np.arange(2)+1, b)
- array([[0, 1, 2, 3, 4],
- [0, 2, 4, 6, 8]])
- >>> np.einsum(np.arange(2)+1, [0], b, [1])
- array([[0, 1, 2, 3, 4],
- [0, 2, 4, 6, 8]])
- >>> np.outer(np.arange(2)+1, b)
- array([[0, 1, 2, 3, 4],
- [0, 2, 4, 6, 8]])
-
- Tensor contraction:
-
- >>> a = np.arange(60.).reshape(3,4,5)
- >>> b = np.arange(24.).reshape(4,3,2)
- >>> np.einsum('ijk,jil->kl', a, b)
- array([[ 4400., 4730.],
- [ 4532., 4874.],
- [ 4664., 5018.],
- [ 4796., 5162.],
- [ 4928., 5306.]])
- >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
- array([[ 4400., 4730.],
- [ 4532., 4874.],
- [ 4664., 5018.],
- [ 4796., 5162.],
- [ 4928., 5306.]])
- >>> np.tensordot(a,b, axes=([1,0],[0,1]))
- array([[ 4400., 4730.],
- [ 4532., 4874.],
- [ 4664., 5018.],
- [ 4796., 5162.],
- [ 4928., 5306.]])
-
- Writeable returned arrays (since version 1.10.0):
-
- >>> a = np.zeros((3, 3))
- >>> np.einsum('ii->i', a)[:] = 1
- >>> a
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
-
- Example of ellipsis use:
-
- >>> a = np.arange(6).reshape((3,2))
- >>> b = np.arange(12).reshape((4,3))
- >>> np.einsum('ki,jk->ij', a, b)
- array([[10, 28, 46, 64],
- [13, 40, 67, 94]])
- >>> np.einsum('ki,...k->i...', a, b)
- array([[10, 28, 46, 64],
- [13, 40, 67, 94]])
- >>> np.einsum('k...,jk', a, b)
- array([[10, 28, 46, 64],
- [13, 40, 67, 94]])
-
- """)
-
-
-##############################################################################
-#
-# Documentation for ndarray attributes and methods
-#
-##############################################################################
-
-
-##############################################################################
-#
-# ndarray object
-#
-##############################################################################
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray',
- """
- ndarray(shape, dtype=float, buffer=None, offset=0,
- strides=None, order=None)
-
- An array object represents a multidimensional, homogeneous array
- of fixed-size items. An associated data-type object describes the
- format of each element in the array (its byte-order, how many bytes it
- occupies in memory, whether it is an integer, a floating point number,
- or something else, etc.)
-
- Arrays should be constructed using `array`, `zeros` or `empty` (refer
- to the See Also section below). The parameters given here refer to
- a low-level method (`ndarray(...)`) for instantiating an array.
-
- For more information, refer to the `numpy` module and examine the
- methods and attributes of an array.
-
- Parameters
- ----------
- (for the __new__ method; see Notes below)
-
- shape : tuple of ints
- Shape of created array.
- dtype : data-type, optional
- Any object that can be interpreted as a numpy data type.
- buffer : object exposing buffer interface, optional
- Used to fill the array with data.
- offset : int, optional
- Offset of array data in buffer.
- strides : tuple of ints, optional
- Strides of data in memory.
- order : {'C', 'F'}, optional
- Row-major (C-style) or column-major (Fortran-style) order.
-
- Attributes
- ----------
- T : ndarray
- Transpose of the array.
- data : buffer
- The array's elements, in memory.
- dtype : dtype object
- Describes the format of the elements in the array.
- flags : dict
- Dictionary containing information related to memory use, e.g.,
- 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
- flat : numpy.flatiter object
- Flattened version of the array as an iterator. The iterator
- allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
- assignment examples; TODO).
- imag : ndarray
- Imaginary part of the array.
- real : ndarray
- Real part of the array.
- size : int
- Number of elements in the array.
- itemsize : int
- The memory use of each array element in bytes.
- nbytes : int
- The total number of bytes required to store the array data,
- i.e., ``itemsize * size``.
- ndim : int
- The array's number of dimensions.
- shape : tuple of ints
- Shape of the array.
- strides : tuple of ints
- The step-size required to move from one element to the next in
- memory. For example, a contiguous ``(3, 4)`` array of type
- ``int16`` in C-order has strides ``(8, 2)``. This implies that
- to move from element to element in memory requires jumps of 2 bytes.
- To move from row-to-row, one needs to jump 8 bytes at a time
- (``2 * 4``).
- ctypes : ctypes object
- Class containing properties of the array needed for interaction
- with ctypes.
- base : ndarray
- If the array is a view into another array, that array is its `base`
- (unless that array is also a view). The `base` array is where the
- array data is actually stored.
-
- See Also
- --------
- array : Construct an array.
- zeros : Create an array, each element of which is zero.
- empty : Create an array, but leave its allocated memory unchanged (i.e.,
- it contains "garbage").
- dtype : Create a data-type.
-
- Notes
- -----
- There are two modes of creating an array using ``__new__``:
-
- 1. If `buffer` is None, then only `shape`, `dtype`, and `order`
- are used.
- 2. If `buffer` is an object exposing the buffer interface, then
- all keywords are interpreted.
-
- No ``__init__`` method is needed because the array is fully initialized
- after the ``__new__`` method.
-
- Examples
- --------
- These examples illustrate the low-level `ndarray` constructor. Refer
- to the `See Also` section above for easier ways of constructing an
- ndarray.
-
- First mode, `buffer` is None:
-
- >>> np.ndarray(shape=(2,2), dtype=float, order='F')
- array([[ -1.13698227e+002, 4.25087011e-303],
- [ 2.88528414e-306, 3.27025015e-309]]) #random
-
- Second mode:
-
- >>> np.ndarray((2,), buffer=np.array([1,2,3]),
- ... offset=np.int_().itemsize,
- ... dtype=int) # offset = 1*itemsize, i.e. skip first element
- array([2, 3])
-
- """)
-
-
-##############################################################################
-#
-# ndarray attributes
-#
-##############################################################################
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
- """Array protocol: Python side."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
- """None."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
- """Array priority."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
- """Array protocol: C-struct side."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
- """Allow the array to be interpreted as a ctypes object by returning the
- data-memory location as an integer
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
- """
- Base object if memory is from some other object.
-
- Examples
- --------
- The base of an array that owns its memory is None:
-
- >>> x = np.array([1,2,3,4])
- >>> x.base is None
- True
-
- Slicing creates a view, whose memory is shared with x:
-
- >>> y = x[2:]
- >>> y.base is x
- True
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
- """
- An object to simplify the interaction of the array with the ctypes
- module.
-
- This attribute creates an object that makes it easier to use arrays
- when calling shared libraries with the ctypes module. The returned
- object has, among others, data, shape, and strides attributes (see
- Notes below) which themselves return ctypes objects that can be used
- as arguments to a shared library.
-
- Parameters
- ----------
- None
-
- Returns
- -------
- c : Python object
- Possessing attributes data, shape, strides, etc.
-
- See Also
- --------
- numpy.ctypeslib
-
- Notes
- -----
- Below are the public attributes of this object which were documented
- in "Guide to NumPy" (we have omitted undocumented public attributes,
- as well as documented private attributes):
-
- * data: A pointer to the memory area of the array as a Python integer.
- This memory area may contain data that is not aligned, or not in correct
- byte-order. The memory area may not even be writeable. The array
- flags and data-type of this array should be respected when passing this
- attribute to arbitrary C-code to avoid trouble that can include Python
- crashing. User Beware! The value of this attribute is exactly the same
- as self._array_interface_['data'][0].
-
- * shape (c_intp*self.ndim): A ctypes array of length self.ndim where
- the basetype is the C-integer corresponding to dtype('p') on this
- platform. This base-type could be c_int, c_long, or c_longlong
- depending on the platform. The c_intp type is defined accordingly in
- numpy.ctypeslib. The ctypes array contains the shape of the underlying
- array.
-
- * strides (c_intp*self.ndim): A ctypes array of length self.ndim where
- the basetype is the same as for the shape attribute. This ctypes array
- contains the strides information from the underlying array. This strides
- information is important for showing how many bytes must be jumped to
- get to the next element in the array.
-
- * data_as(obj): Return the data pointer cast to a particular c-types object.
- For example, calling self._as_parameter_ is equivalent to
- self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
- pointer to a ctypes array of floating-point data:
- self.data_as(ctypes.POINTER(ctypes.c_double)).
-
- * shape_as(obj): Return the shape tuple as an array of some other c-types
- type. For example: self.shape_as(ctypes.c_short).
-
- * strides_as(obj): Return the strides tuple as an array of some other
- c-types type. For example: self.strides_as(ctypes.c_longlong).
-
- Be careful using the ctypes attribute - especially on temporary
- arrays or arrays constructed on the fly. For example, calling
- ``(a+b).ctypes.data_as(ctypes.c_void_p)`` returns a pointer to memory
- that is invalid because the array created as (a+b) is deallocated
- before the next Python statement. You can avoid this problem using
- either ``c=a+b`` or ``ct=(a+b).ctypes``. In the latter case, ct will
- hold a reference to the array until ct is deleted or re-assigned.
-
- If the ctypes module is not available, then the ctypes attribute
- of array objects still returns something useful, but ctypes objects
- are not returned and errors may be raised instead. In particular,
- the object will still have the as parameter attribute which will
- return an integer equal to the data attribute.
-
- Examples
- --------
- >>> import ctypes
- >>> x
- array([[0, 1],
- [2, 3]])
- >>> x.ctypes.data
- 30439712
- >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
- <ctypes.LP_c_long object at 0x01F01300>
- >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
- c_long(0)
- >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
- c_longlong(4294967296L)
- >>> x.ctypes.shape
- <numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
- >>> x.ctypes.shape_as(ctypes.c_long)
- <numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
- >>> x.ctypes.strides
- <numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
- >>> x.ctypes.strides_as(ctypes.c_longlong)
- <numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
- """Python buffer object pointing to the start of the array's data."""))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
- """
- Data-type of the array's elements.
-
- Parameters
- ----------
- None
-
- Returns
- -------
- d : numpy dtype object
-
- See Also
- --------
- numpy.dtype
-
- Examples
- --------
- >>> x
- array([[0, 1],
- [2, 3]])
- >>> x.dtype
- dtype('int32')
- >>> type(x.dtype)
- <type 'numpy.dtype'>
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
- """
- The imaginary part of the array.
-
- Examples
- --------
- >>> x = np.sqrt([1+0j, 0+1j])
- >>> x.imag
- array([ 0. , 0.70710678])
- >>> x.imag.dtype
- dtype('float64')
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
- """
- Length of one array element in bytes.
-
- Examples
- --------
- >>> x = np.array([1,2,3], dtype=np.float64)
- >>> x.itemsize
- 8
- >>> x = np.array([1,2,3], dtype=np.complex128)
- >>> x.itemsize
- 16
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
- """
- Information about the memory layout of the array.
-
- Attributes
- ----------
- C_CONTIGUOUS (C)
- The data is in a single, C-style contiguous segment.
- F_CONTIGUOUS (F)
- The data is in a single, Fortran-style contiguous segment.
- OWNDATA (O)
- The array owns the memory it uses or borrows it from another object.
- WRITEABLE (W)
- The data area can be written to. Setting this to False locks
- the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
- from its base array at creation time, but a view of a writeable
- array may be subsequently locked while the base array remains writeable.
- (The opposite is not true, in that a view of a locked array may not
- be made writeable. However, currently, locking a base object does not
- lock any views that already reference it, so under that circumstance it
- is possible to alter the contents of a locked array via a previously
- created writeable view onto it.) Attempting to change a non-writeable
- array raises a RuntimeError exception.
- ALIGNED (A)
- The data and all elements are aligned appropriately for the hardware.
- WRITEBACKIFCOPY (X)
- This array is a copy of some other array. The C-API function
- PyArray_ResolveWritebackIfCopy must be called before deallocating
- to the base array will be updated with the contents of this array.
- UPDATEIFCOPY (U)
- (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array.
- When this array is
- deallocated, the base array will be updated with the contents of
- this array.
- FNC
- F_CONTIGUOUS and not C_CONTIGUOUS.
- FORC
- F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
- BEHAVED (B)
- ALIGNED and WRITEABLE.
- CARRAY (CA)
- BEHAVED and C_CONTIGUOUS.
- FARRAY (FA)
- BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
-
- Notes
- -----
- The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),
- or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag
- names are only supported in dictionary access.
-
- Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be
- changed by the user, via direct assignment to the attribute or dictionary
- entry, or by calling `ndarray.setflags`.
-
- The array flags cannot be set arbitrarily:
-
- - UPDATEIFCOPY can only be set ``False``.
- - WRITEBACKIFCOPY can only be set ``False``.
- - ALIGNED can only be set ``True`` if the data is truly aligned.
- - WRITEABLE can only be set ``True`` if the array owns its own memory
- or the ultimate owner of the memory exposes a writeable buffer
- interface or is a string.
-
- Arrays can be both C-style and Fortran-style contiguous simultaneously.
- This is clear for 1-dimensional arrays, but can also be true for higher
- dimensional arrays.
-
- Even for contiguous arrays a stride for a given dimension
- ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
- or the array has no elements.
- It does *not* generally hold that ``self.strides[-1] == self.itemsize``
- for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
- Fortran-style contiguous arrays is true.
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
- """
- A 1-D iterator over the array.
-
- This is a `numpy.flatiter` instance, which acts similarly to, but is not
- a subclass of, Python's built-in iterator object.
-
- See Also
- --------
- flatten : Return a copy of the array collapsed into one dimension.
-
- flatiter
-
- Examples
- --------
- >>> x = np.arange(1, 7).reshape(2, 3)
- >>> x
- array([[1, 2, 3],
- [4, 5, 6]])
- >>> x.flat[3]
- 4
- >>> x.T
- array([[1, 4],
- [2, 5],
- [3, 6]])
- >>> x.T.flat[3]
- 5
- >>> type(x.flat)
- <type 'numpy.flatiter'>
-
- An assignment example:
-
- >>> x.flat = 3; x
- array([[3, 3, 3],
- [3, 3, 3]])
- >>> x.flat[[1,4]] = 1; x
- array([[3, 1, 3],
- [3, 1, 3]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
- """
- Total bytes consumed by the elements of the array.
-
- Notes
- -----
- Does not include memory consumed by non-element attributes of the
- array object.
-
- Examples
- --------
- >>> x = np.zeros((3,5,2), dtype=np.complex128)
- >>> x.nbytes
- 480
- >>> np.prod(x.shape) * x.itemsize
- 480
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
- """
- Number of array dimensions.
-
- Examples
- --------
- >>> x = np.array([1, 2, 3])
- >>> x.ndim
- 1
- >>> y = np.zeros((2, 3, 4))
- >>> y.ndim
- 3
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
- """
- The real part of the array.
-
- Examples
- --------
- >>> x = np.sqrt([1+0j, 0+1j])
- >>> x.real
- array([ 1. , 0.70710678])
- >>> x.real.dtype
- dtype('float64')
-
- See Also
- --------
- numpy.real : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
- """
- Tuple of array dimensions.
-
- The shape property is usually used to get the current shape of an array,
- but may also be used to reshape the array in-place by assigning a tuple of
- array dimensions to it. As with `numpy.reshape`, one of the new shape
- dimensions can be -1, in which case its value is inferred from the size of
- the array and the remaining dimensions. Reshaping an array in-place will
- fail if a copy is required.
-
- Examples
- --------
- >>> x = np.array([1, 2, 3, 4])
- >>> x.shape
- (4,)
- >>> y = np.zeros((2, 3, 4))
- >>> y.shape
- (2, 3, 4)
- >>> y.shape = (3, 8)
- >>> y
- array([[ 0., 0., 0., 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0., 0., 0., 0.]])
- >>> y.shape = (3, 6)
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- ValueError: total size of new array must be unchanged
- >>> np.zeros((4,2))[::2].shape = (-1,)
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- AttributeError: incompatible shape for a non-contiguous array
-
- See Also
- --------
- numpy.reshape : similar function
- ndarray.reshape : similar method
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
- """
- Number of elements in the array.
-
- Equal to ``np.prod(a.shape)``, i.e., the product of the array's
- dimensions.
-
- Notes
- -----
- `a.size` returns a standard arbitrary precision Python integer. This
- may not be the case with other methods of obtaining the same value
- (like the suggested ``np.prod(a.shape)``, which returns an instance
- of ``np.int_``), and may be relevant if the value is used further in
- calculations that may overflow a fixed size integer type.
-
- Examples
- --------
- >>> x = np.zeros((3, 5, 2), dtype=np.complex128)
- >>> x.size
- 30
- >>> np.prod(x.shape)
- 30
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
- """
- Tuple of bytes to step in each dimension when traversing an array.
-
- The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
- is::
-
- offset = sum(np.array(i) * a.strides)
-
- A more detailed explanation of strides can be found in the
- "ndarray.rst" file in the NumPy reference guide.
-
- Notes
- -----
- Imagine an array of 32-bit integers (each 4 bytes)::
-
- x = np.array([[0, 1, 2, 3, 4],
- [5, 6, 7, 8, 9]], dtype=np.int32)
-
- This array is stored in memory as 40 bytes, one after the other
- (known as a contiguous block of memory). The strides of an array tell
- us how many bytes we have to skip in memory to move to the next position
- along a certain axis. For example, we have to skip 4 bytes (1 value) to
- move to the next column, but 20 bytes (5 values) to get to the same
- position in the next row. As such, the strides for the array `x` will be
- ``(20, 4)``.
-
- See Also
- --------
- numpy.lib.stride_tricks.as_strided
-
- Examples
- --------
- >>> y = np.reshape(np.arange(2*3*4), (2,3,4))
- >>> y
- array([[[ 0, 1, 2, 3],
- [ 4, 5, 6, 7],
- [ 8, 9, 10, 11]],
- [[12, 13, 14, 15],
- [16, 17, 18, 19],
- [20, 21, 22, 23]]])
- >>> y.strides
- (48, 16, 4)
- >>> y[1,1,1]
- 17
- >>> offset=sum(y.strides * np.array((1,1,1)))
- >>> offset/y.itemsize
- 17
-
- >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
- >>> x.strides
- (32, 4, 224, 1344)
- >>> i = np.array([3,5,2,2])
- >>> offset = sum(i * x.strides)
- >>> x[3,5,2,2]
- 813
- >>> offset / x.itemsize
- 813
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
- """
- Same as self.transpose(), except that self is returned if
- self.ndim < 2.
-
- Examples
- --------
- >>> x = np.array([[1.,2.],[3.,4.]])
- >>> x
- array([[ 1., 2.],
- [ 3., 4.]])
- >>> x.T
- array([[ 1., 3.],
- [ 2., 4.]])
- >>> x = np.array([1.,2.,3.,4.])
- >>> x
- array([ 1., 2., 3., 4.])
- >>> x.T
- array([ 1., 2., 3., 4.])
-
- """))
-
-
-##############################################################################
-#
-# ndarray methods
-#
-##############################################################################
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
- """ a.__array__(|dtype) -> reference if type unchanged, copy otherwise.
-
- Returns either a new reference to self if dtype is not given or a new array
- of provided data type if dtype is different from the current dtype of the
- array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__',
- """a.__array_prepare__(obj) -> Object of same type as ndarray object obj.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
- """a.__array_wrap__(obj) -> Object of same type as ndarray object a.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
- """a.__copy__()
-
- Used if :func:`copy.copy` is called on an array. Returns a copy of the array.
-
- Equivalent to ``a.copy(order='K')``.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
- """a.__deepcopy__(memo, /) -> Deep copy of array.
-
- Used if :func:`copy.deepcopy` is called on an array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
- """a.__reduce__()
-
- For pickling.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
- """a.__setstate__(state, /)
-
- For unpickling.
-
- The `state` argument must be a sequence that contains the following
- elements:
-
- Parameters
- ----------
- version : int
- optional pickle version. If omitted defaults to 0.
- shape : tuple
- dtype : data-type
- isFortran : bool
- rawdata : string or list
- a binary string with the data (or a list if 'a' is an object array)
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
- """
- a.all(axis=None, out=None, keepdims=False)
-
- Returns True if all elements evaluate to True.
-
- Refer to `numpy.all` for full documentation.
-
- See Also
- --------
- numpy.all : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
- """
- a.any(axis=None, out=None, keepdims=False)
-
- Returns True if any of the elements of `a` evaluate to True.
-
- Refer to `numpy.any` for full documentation.
-
- See Also
- --------
- numpy.any : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
- """
- a.argmax(axis=None, out=None)
-
- Return indices of the maximum values along the given axis.
-
- Refer to `numpy.argmax` for full documentation.
-
- See Also
- --------
- numpy.argmax : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
- """
- a.argmin(axis=None, out=None)
-
- Return indices of the minimum values along the given axis of `a`.
-
- Refer to `numpy.argmin` for detailed documentation.
-
- See Also
- --------
- numpy.argmin : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
- """
- a.argsort(axis=-1, kind='quicksort', order=None)
-
- Returns the indices that would sort this array.
-
- Refer to `numpy.argsort` for full documentation.
-
- See Also
- --------
- numpy.argsort : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition',
- """
- a.argpartition(kth, axis=-1, kind='introselect', order=None)
-
- Returns the indices that would partition this array.
-
- Refer to `numpy.argpartition` for full documentation.
-
- .. versionadded:: 1.8.0
-
- See Also
- --------
- numpy.argpartition : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
- """
- a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
-
- Copy of the array, cast to a specified type.
-
- Parameters
- ----------
- dtype : str or dtype
- Typecode or data-type to which the array is cast.
- order : {'C', 'F', 'A', 'K'}, optional
- Controls the memory layout order of the result.
- 'C' means C order, 'F' means Fortran order, 'A'
- means 'F' order if all the arrays are Fortran contiguous,
- 'C' order otherwise, and 'K' means as close to the
- order the array elements appear in memory as possible.
- Default is 'K'.
- casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
- Controls what kind of data casting may occur. Defaults to 'unsafe'
- for backwards compatibility.
-
- * 'no' means the data types should not be cast at all.
- * 'equiv' means only byte-order changes are allowed.
- * 'safe' means only casts which can preserve values are allowed.
- * 'same_kind' means only safe casts or casts within a kind,
- like float64 to float32, are allowed.
- * 'unsafe' means any data conversions may be done.
- subok : bool, optional
- If True, then sub-classes will be passed-through (default), otherwise
- the returned array will be forced to be a base-class array.
- copy : bool, optional
- By default, astype always returns a newly allocated array. If this
- is set to false, and the `dtype`, `order`, and `subok`
- requirements are satisfied, the input array is returned instead
- of a copy.
-
- Returns
- -------
- arr_t : ndarray
- Unless `copy` is False and the other conditions for returning the input
- array are satisfied (see description for `copy` input parameter), `arr_t`
- is a new array of the same shape as the input array, with dtype, order
- given by `dtype`, `order`.
-
- Notes
- -----
- Starting in NumPy 1.9, astype method now returns an error if the string
- dtype to cast to is not long enough in 'safe' casting mode to hold the max
- value of integer/float array that is being casted. Previously the casting
- was allowed even if the result was truncated.
-
- Raises
- ------
- ComplexWarning
- When casting from complex to float or int. To avoid this,
- one should use ``a.real.astype(t)``.
-
- Examples
- --------
- >>> x = np.array([1, 2, 2.5])
- >>> x
- array([ 1. , 2. , 2.5])
-
- >>> x.astype(int)
- array([1, 2, 2])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
- """
- a.byteswap(inplace=False)
-
- Swap the bytes of the array elements
-
- Toggle between low-endian and big-endian data representation by
- returning a byteswapped array, optionally swapped in-place.
-
- Parameters
- ----------
- inplace : bool, optional
- If ``True``, swap bytes in-place, default is ``False``.
-
- Returns
- -------
- out : ndarray
- The byteswapped array. If `inplace` is ``True``, this is
- a view to self.
-
- Examples
- --------
- >>> A = np.array([1, 256, 8755], dtype=np.int16)
- >>> map(hex, A)
- ['0x1', '0x100', '0x2233']
- >>> A.byteswap(inplace=True)
- array([ 256, 1, 13090], dtype=int16)
- >>> map(hex, A)
- ['0x100', '0x1', '0x3322']
-
- Arrays of strings are not swapped
-
- >>> A = np.array(['ceg', 'fac'])
- >>> A.byteswap()
- array(['ceg', 'fac'],
- dtype='|S3')
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
- """
- a.choose(choices, out=None, mode='raise')
-
- Use an index array to construct a new array from a set of choices.
-
- Refer to `numpy.choose` for full documentation.
-
- See Also
- --------
- numpy.choose : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
- """
- a.clip(min=None, max=None, out=None)
-
- Return an array whose values are limited to ``[min, max]``.
- One of max or min must be given.
-
- Refer to `numpy.clip` for full documentation.
-
- See Also
- --------
- numpy.clip : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
- """
- a.compress(condition, axis=None, out=None)
-
- Return selected slices of this array along given axis.
-
- Refer to `numpy.compress` for full documentation.
-
- See Also
- --------
- numpy.compress : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
- """
- a.conj()
-
- Complex-conjugate all elements.
-
- Refer to `numpy.conjugate` for full documentation.
-
- See Also
- --------
- numpy.conjugate : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
- """
- a.conjugate()
-
- Return the complex conjugate, element-wise.
-
- Refer to `numpy.conjugate` for full documentation.
-
- See Also
- --------
- numpy.conjugate : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
- """
- a.copy(order='C')
-
- Return a copy of the array.
-
- Parameters
- ----------
- order : {'C', 'F', 'A', 'K'}, optional
- Controls the memory layout of the copy. 'C' means C-order,
- 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
- 'C' otherwise. 'K' means match the layout of `a` as closely
- as possible. (Note that this function and :func:`numpy.copy` are very
- similar, but have different default values for their order=
- arguments.)
-
- See also
- --------
- numpy.copy
- numpy.copyto
-
- Examples
- --------
- >>> x = np.array([[1,2,3],[4,5,6]], order='F')
-
- >>> y = x.copy()
-
- >>> x.fill(0)
-
- >>> x
- array([[0, 0, 0],
- [0, 0, 0]])
-
- >>> y
- array([[1, 2, 3],
- [4, 5, 6]])
-
- >>> y.flags['C_CONTIGUOUS']
- True
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
- """
- a.cumprod(axis=None, dtype=None, out=None)
-
- Return the cumulative product of the elements along the given axis.
-
- Refer to `numpy.cumprod` for full documentation.
-
- See Also
- --------
- numpy.cumprod : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
- """
- a.cumsum(axis=None, dtype=None, out=None)
-
- Return the cumulative sum of the elements along the given axis.
-
- Refer to `numpy.cumsum` for full documentation.
-
- See Also
- --------
- numpy.cumsum : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
- """
- a.diagonal(offset=0, axis1=0, axis2=1)
-
- Return specified diagonals. In NumPy 1.9 the returned array is a
- read-only view instead of a copy as in previous NumPy versions. In
- a future version the read-only restriction will be removed.
-
- Refer to :func:`numpy.diagonal` for full documentation.
-
- See Also
- --------
- numpy.diagonal : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('dot',
- """
- a.dot(b, out=None)
-
- Dot product of two arrays.
-
- Refer to `numpy.dot` for full documentation.
-
- See Also
- --------
- numpy.dot : equivalent function
-
- Examples
- --------
- >>> a = np.eye(2)
- >>> b = np.ones((2, 2)) * 2
- >>> a.dot(b)
- array([[ 2., 2.],
- [ 2., 2.]])
-
- This array method can be conveniently chained:
-
- >>> a.dot(b).dot(b)
- array([[ 8., 8.],
- [ 8., 8.]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
- """a.dump(file)
-
- Dump a pickle of the array to the specified file.
- The array can be read back with pickle.load or numpy.load.
-
- Parameters
- ----------
- file : str
- A string naming the dump file.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
- """
- a.dumps()
-
- Returns the pickle of the array as a string.
- pickle.loads or numpy.loads will convert the string back to an array.
-
- Parameters
- ----------
- None
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
- """
- a.fill(value)
-
- Fill the array with a scalar value.
-
- Parameters
- ----------
- value : scalar
- All elements of `a` will be assigned this value.
-
- Examples
- --------
- >>> a = np.array([1, 2])
- >>> a.fill(0)
- >>> a
- array([0, 0])
- >>> a = np.empty(2)
- >>> a.fill(1)
- >>> a
- array([ 1., 1.])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
- """
- a.flatten(order='C')
-
- Return a copy of the array collapsed into one dimension.
-
- Parameters
- ----------
- order : {'C', 'F', 'A', 'K'}, optional
- 'C' means to flatten in row-major (C-style) order.
- 'F' means to flatten in column-major (Fortran-
- style) order. 'A' means to flatten in column-major
- order if `a` is Fortran *contiguous* in memory,
- row-major order otherwise. 'K' means to flatten
- `a` in the order the elements occur in memory.
- The default is 'C'.
-
- Returns
- -------
- y : ndarray
- A copy of the input array, flattened to one dimension.
-
- See Also
- --------
- ravel : Return a flattened array.
- flat : A 1-D flat iterator over the array.
-
- Examples
- --------
- >>> a = np.array([[1,2], [3,4]])
- >>> a.flatten()
- array([1, 2, 3, 4])
- >>> a.flatten('F')
- array([1, 3, 2, 4])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
- """
- a.getfield(dtype, offset=0)
-
- Returns a field of the given array as a certain type.
-
- A field is a view of the array data with a given data-type. The values in
- the view are determined by the given type and the offset into the current
- array in bytes. The offset needs to be such that the view dtype fits in the
- array dtype; for example an array of dtype complex128 has 16-byte elements.
- If taking a view with a 32-bit integer (4 bytes), the offset needs to be
- between 0 and 12 bytes.
-
- Parameters
- ----------
- dtype : str or dtype
- The data type of the view. The dtype size of the view can not be larger
- than that of the array itself.
- offset : int
- Number of bytes to skip before beginning the element view.
-
- Examples
- --------
- >>> x = np.diag([1.+1.j]*2)
- >>> x[1, 1] = 2 + 4.j
- >>> x
- array([[ 1.+1.j, 0.+0.j],
- [ 0.+0.j, 2.+4.j]])
- >>> x.getfield(np.float64)
- array([[ 1., 0.],
- [ 0., 2.]])
-
- By choosing an offset of 8 bytes we can select the complex part of the
- array for our view:
-
- >>> x.getfield(np.float64, offset=8)
- array([[ 1., 0.],
- [ 0., 4.]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
- """
- a.item(*args)
-
- Copy an element of an array to a standard Python scalar and return it.
-
- Parameters
- ----------
- \\*args : Arguments (variable number and type)
-
- * none: in this case, the method only works for arrays
- with one element (`a.size == 1`), which element is
- copied into a standard Python scalar object and returned.
-
- * int_type: this argument is interpreted as a flat index into
- the array, specifying which element to copy and return.
-
- * tuple of int_types: functions as does a single int_type argument,
- except that the argument is interpreted as an nd-index into the
- array.
-
- Returns
- -------
- z : Standard Python scalar object
- A copy of the specified element of the array as a suitable
- Python scalar
-
- Notes
- -----
- When the data type of `a` is longdouble or clongdouble, item() returns
- a scalar array object because there is no available Python scalar that
- would not lose information. Void arrays return a buffer object for item(),
- unless fields are defined, in which case a tuple is returned.
-
- `item` is very similar to a[args], except, instead of an array scalar,
- a standard Python scalar is returned. This can be useful for speeding up
- access to elements of the array and doing arithmetic on elements of the
- array using Python's optimized math.
-
- Examples
- --------
- >>> x = np.random.randint(9, size=(3, 3))
- >>> x
- array([[3, 1, 7],
- [2, 8, 3],
- [8, 5, 3]])
- >>> x.item(3)
- 2
- >>> x.item(7)
- 5
- >>> x.item((0, 1))
- 1
- >>> x.item((2, 2))
- 3
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset',
- """
- a.itemset(*args)
-
- Insert scalar into an array (scalar is cast to array's dtype, if possible)
-
- There must be at least 1 argument, and define the last argument
- as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster
- than ``a[args] = item``. The item should be a scalar value and `args`
- must select a single item in the array `a`.
-
- Parameters
- ----------
- \\*args : Arguments
- If one argument: a scalar, only used in case `a` is of size 1.
- If two arguments: the last argument is the value to be set
- and must be a scalar, the first argument specifies a single array
- element location. It is either an int or a tuple.
-
- Notes
- -----
- Compared to indexing syntax, `itemset` provides some speed increase
- for placing a scalar into a particular location in an `ndarray`,
- if you must do this. However, generally this is discouraged:
- among other problems, it complicates the appearance of the code.
- Also, when using `itemset` (and `item`) inside a loop, be sure
- to assign the methods to a local variable to avoid the attribute
- look-up at each loop iteration.
-
- Examples
- --------
- >>> x = np.random.randint(9, size=(3, 3))
- >>> x
- array([[3, 1, 7],
- [2, 8, 3],
- [8, 5, 3]])
- >>> x.itemset(4, 0)
- >>> x.itemset((2, 2), 9)
- >>> x
- array([[3, 1, 7],
- [2, 0, 3],
- [8, 5, 9]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
- """
- a.max(axis=None, out=None, keepdims=False)
-
- Return the maximum along a given axis.
-
- Refer to `numpy.amax` for full documentation.
-
- See Also
- --------
- numpy.amax : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
- """
- a.mean(axis=None, dtype=None, out=None, keepdims=False)
-
- Returns the average of the array elements along given axis.
-
- Refer to `numpy.mean` for full documentation.
-
- See Also
- --------
- numpy.mean : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
- """
- a.min(axis=None, out=None, keepdims=False)
-
- Return the minimum along a given axis.
-
- Refer to `numpy.amin` for full documentation.
-
- See Also
- --------
- numpy.amin : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'shares_memory',
- """
- shares_memory(a, b, max_work=None)
-
- Determine if two arrays share memory
-
- Parameters
- ----------
- a, b : ndarray
- Input arrays
- max_work : int, optional
- Effort to spend on solving the overlap problem (maximum number
- of candidate solutions to consider). The following special
- values are recognized:
-
- max_work=MAY_SHARE_EXACT (default)
- The problem is solved exactly. In this case, the function returns
- True only if there is an element shared between the arrays.
- max_work=MAY_SHARE_BOUNDS
- Only the memory bounds of a and b are checked.
-
- Raises
- ------
- numpy.TooHardError
- Exceeded max_work.
-
- Returns
- -------
- out : bool
-
- See Also
- --------
- may_share_memory
-
- Examples
- --------
- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
- False
-
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'may_share_memory',
- """
- may_share_memory(a, b, max_work=None)
-
- Determine if two arrays might share memory
-
- A return of True does not necessarily mean that the two arrays
- share any element. It just means that they *might*.
-
- Only the memory bounds of a and b are checked by default.
-
- Parameters
- ----------
- a, b : ndarray
- Input arrays
- max_work : int, optional
- Effort to spend on solving the overlap problem. See
- `shares_memory` for details. Default for ``may_share_memory``
- is to do a bounds check.
-
- Returns
- -------
- out : bool
-
- See Also
- --------
- shares_memory
-
- Examples
- --------
- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
- False
- >>> x = np.zeros([3, 4])
- >>> np.may_share_memory(x[:,0], x[:,1])
- True
-
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
- """
- arr.newbyteorder(new_order='S')
-
- Return the array with the same data viewed with a different byte order.
-
- Equivalent to::
-
- arr.view(arr.dtype.newbytorder(new_order))
-
- Changes are also made in all fields and sub-arrays of the array data
- type.
-
-
-
- Parameters
- ----------
- new_order : string, optional
- Byte order to force; a value from the byte order specifications
- below. `new_order` codes can be any of:
-
- * 'S' - swap dtype from current to opposite endian
- * {'<', 'L'} - little endian
- * {'>', 'B'} - big endian
- * {'=', 'N'} - native order
- * {'|', 'I'} - ignore (no change to byte order)
-
- The default value ('S') results in swapping the current
- byte order. The code does a case-insensitive check on the first
- letter of `new_order` for the alternatives above. For example,
- any of 'B' or 'b' or 'biggish' are valid to specify big-endian.
-
-
- Returns
- -------
- new_arr : array
- New array object with the dtype reflecting given change to the
- byte order.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
- """
- a.nonzero()
-
- Return the indices of the elements that are non-zero.
-
- Refer to `numpy.nonzero` for full documentation.
-
- See Also
- --------
- numpy.nonzero : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
- """
- a.prod(axis=None, dtype=None, out=None, keepdims=False)
-
- Return the product of the array elements over the given axis
-
- Refer to `numpy.prod` for full documentation.
-
- See Also
- --------
- numpy.prod : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
- """
- a.ptp(axis=None, out=None, keepdims=False)
-
- Peak to peak (maximum - minimum) value along a given axis.
-
- Refer to `numpy.ptp` for full documentation.
-
- See Also
- --------
- numpy.ptp : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
- """
- a.put(indices, values, mode='raise')
-
- Set ``a.flat[n] = values[n]`` for all `n` in indices.
-
- Refer to `numpy.put` for full documentation.
-
- See Also
- --------
- numpy.put : equivalent function
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'copyto',
- """
- copyto(dst, src, casting='same_kind', where=True)
-
- Copies values from one array to another, broadcasting as necessary.
-
- Raises a TypeError if the `casting` rule is violated, and if
- `where` is provided, it selects which elements to copy.
-
- .. versionadded:: 1.7.0
-
- Parameters
- ----------
- dst : ndarray
- The array into which values are copied.
- src : array_like
- The array from which values are copied.
- casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
- Controls what kind of data casting may occur when copying.
-
- * 'no' means the data types should not be cast at all.
- * 'equiv' means only byte-order changes are allowed.
- * 'safe' means only casts which can preserve values are allowed.
- * 'same_kind' means only safe casts or casts within a kind,
- like float64 to float32, are allowed.
- * 'unsafe' means any data conversions may be done.
- where : array_like of bool, optional
- A boolean array which is broadcasted to match the dimensions
- of `dst`, and selects elements to copy from `src` to `dst`
- wherever it contains the value True.
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'putmask',
- """
- putmask(a, mask, values)
-
- Changes elements of an array based on conditional and input values.
-
- Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
-
- If `values` is not the same size as `a` and `mask` then it will repeat.
- This gives behavior different from ``a[mask] = values``.
-
- Parameters
- ----------
- a : array_like
- Target array.
- mask : array_like
- Boolean mask array. It has to be the same shape as `a`.
- values : array_like
- Values to put into `a` where `mask` is True. If `values` is smaller
- than `a` it will be repeated.
-
- See Also
- --------
- place, put, take, copyto
-
- Examples
- --------
- >>> x = np.arange(6).reshape(2, 3)
- >>> np.putmask(x, x>2, x**2)
- >>> x
- array([[ 0, 1, 2],
- [ 9, 16, 25]])
-
- If `values` is smaller than `a` it is repeated:
-
- >>> x = np.arange(5)
- >>> np.putmask(x, x>1, [-33, -44])
- >>> x
- array([ 0, 1, -33, -44, -33])
-
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
- """
- a.ravel([order])
-
- Return a flattened array.
-
- Refer to `numpy.ravel` for full documentation.
-
- See Also
- --------
- numpy.ravel : equivalent function
-
- ndarray.flat : a flat iterator on the array.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
- """
- a.repeat(repeats, axis=None)
-
- Repeat elements of an array.
-
- Refer to `numpy.repeat` for full documentation.
-
- See Also
- --------
- numpy.repeat : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
- """
- a.reshape(shape, order='C')
-
- Returns an array containing the same data with a new shape.
-
- Refer to `numpy.reshape` for full documentation.
-
- See Also
- --------
- numpy.reshape : equivalent function
-
- Notes
- -----
- Unlike the free function `numpy.reshape`, this method on `ndarray` allows
- the elements of the shape parameter to be passed in as separate arguments.
- For example, ``a.reshape(10, 11)`` is equivalent to
- ``a.reshape((10, 11))``.
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
- """
- a.resize(new_shape, refcheck=True)
-
- Change shape and size of array in-place.
-
- Parameters
- ----------
- new_shape : tuple of ints, or `n` ints
- Shape of resized array.
- refcheck : bool, optional
- If False, reference count will not be checked. Default is True.
-
- Returns
- -------
- None
-
- Raises
- ------
- ValueError
- If `a` does not own its own data or references or views to it exist,
- and the data memory must be changed.
- PyPy only: will always raise if the data memory must be changed, since
- there is no reliable way to determine if references or views to it
- exist.
-
- SystemError
- If the `order` keyword argument is specified. This behaviour is a
- bug in NumPy.
-
- See Also
- --------
- resize : Return a new array with the specified shape.
-
- Notes
- -----
- This reallocates space for the data area if necessary.
-
- Only contiguous arrays (data elements consecutive in memory) can be
- resized.
-
- The purpose of the reference count check is to make sure you
- do not use this array as a buffer for another Python object and then
- reallocate the memory. However, reference counts can increase in
- other ways so if you are sure that you have not shared the memory
- for this array with another Python object, then you may safely set
- `refcheck` to False.
-
- Examples
- --------
- Shrinking an array: array is flattened (in the order that the data are
- stored in memory), resized, and reshaped:
-
- >>> a = np.array([[0, 1], [2, 3]], order='C')
- >>> a.resize((2, 1))
- >>> a
- array([[0],
- [1]])
-
- >>> a = np.array([[0, 1], [2, 3]], order='F')
- >>> a.resize((2, 1))
- >>> a
- array([[0],
- [2]])
-
- Enlarging an array: as above, but missing entries are filled with zeros:
-
- >>> b = np.array([[0, 1], [2, 3]])
- >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
- >>> b
- array([[0, 1, 2],
- [3, 0, 0]])
-
- Referencing an array prevents resizing...
-
- >>> c = a
- >>> a.resize((1, 1))
- Traceback (most recent call last):
- ...
- ValueError: cannot resize an array that has been referenced ...
-
- Unless `refcheck` is False:
-
- >>> a.resize((1, 1), refcheck=False)
- >>> a
- array([[0]])
- >>> c
- array([[0]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
- """
- a.round(decimals=0, out=None)
-
- Return `a` with each element rounded to the given number of decimals.
-
- Refer to `numpy.around` for full documentation.
-
- See Also
- --------
- numpy.around : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
- """
- a.searchsorted(v, side='left', sorter=None)
-
- Find indices where elements of v should be inserted in a to maintain order.
-
- For full documentation, see `numpy.searchsorted`
-
- See Also
- --------
- numpy.searchsorted : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
- """
- a.setfield(val, dtype, offset=0)
-
- Put a value into a specified place in a field defined by a data-type.
-
- Place `val` into `a`'s field defined by `dtype` and beginning `offset`
- bytes into the field.
-
- Parameters
- ----------
- val : object
- Value to be placed in field.
- dtype : dtype object
- Data-type of the field in which to place `val`.
- offset : int, optional
- The number of bytes into the field at which to place `val`.
-
- Returns
- -------
- None
-
- See Also
- --------
- getfield
-
- Examples
- --------
- >>> x = np.eye(3)
- >>> x.getfield(np.float64)
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
- >>> x.setfield(3, np.int32)
- >>> x.getfield(np.int32)
- array([[3, 3, 3],
- [3, 3, 3],
- [3, 3, 3]])
- >>> x
- array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
- [ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
- [ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
- >>> x.setfield(np.eye(3), np.int32)
- >>> x
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
- """
- a.setflags(write=None, align=None, uic=None)
-
- Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY),
- respectively.
-
- These Boolean-valued flags affect how numpy interprets the memory
- area used by `a` (see Notes below). The ALIGNED flag can only
- be set to True if the data is actually aligned according to the type.
- The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set
- to True. The flag WRITEABLE can only be set to True if the array owns its
- own memory, or the ultimate owner of the memory exposes a writeable buffer
- interface, or is a string. (The exception for string is made so that
- unpickling can be done without copying memory.)
-
- Parameters
- ----------
- write : bool, optional
- Describes whether or not `a` can be written to.
- align : bool, optional
- Describes whether or not `a` is aligned properly for its type.
- uic : bool, optional
- Describes whether or not `a` is a copy of another "base" array.
-
- Notes
- -----
- Array flags provide information about how the memory area used
- for the array is to be interpreted. There are 7 Boolean flags
- in use, only four of which can be changed by the user:
- WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.
-
- WRITEABLE (W) the data area can be written to;
-
- ALIGNED (A) the data and strides are aligned appropriately for the hardware
- (as determined by the compiler);
-
- UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;
-
- WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
- by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
- called, the base array will be updated with the contents of this array.
-
- All flags can be accessed using the single (upper case) letter as well
- as the full name.
-
- Examples
- --------
- >>> y
- array([[3, 1, 7],
- [2, 0, 0],
- [8, 5, 9]])
- >>> y.flags
- C_CONTIGUOUS : True
- F_CONTIGUOUS : False
- OWNDATA : True
- WRITEABLE : True
- ALIGNED : True
- WRITEBACKIFCOPY : False
- UPDATEIFCOPY : False
- >>> y.setflags(write=0, align=0)
- >>> y.flags
- C_CONTIGUOUS : True
- F_CONTIGUOUS : False
- OWNDATA : True
- WRITEABLE : False
- ALIGNED : False
- WRITEBACKIFCOPY : False
- UPDATEIFCOPY : False
- >>> y.setflags(uic=1)
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- ValueError: cannot set WRITEBACKIFCOPY flag to True
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
- """
- a.sort(axis=-1, kind='quicksort', order=None)
-
- Sort an array, in-place.
-
- Parameters
- ----------
- axis : int, optional
- Axis along which to sort. Default is -1, which means sort along the
- last axis.
- kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
- Sorting algorithm. Default is 'quicksort'.
- order : str or list of str, optional
- When `a` is an array with fields defined, this argument specifies
- which fields to compare first, second, etc. A single field can
- be specified as a string, and not all fields need be specified,
- but unspecified fields will still be used, in the order in which
- they come up in the dtype, to break ties.
-
- See Also
- --------
- numpy.sort : Return a sorted copy of an array.
- argsort : Indirect sort.
- lexsort : Indirect stable sort on multiple keys.
- searchsorted : Find elements in sorted array.
- partition: Partial sort.
-
- Notes
- -----
- See ``sort`` for notes on the different sorting algorithms.
-
- Examples
- --------
- >>> a = np.array([[1,4], [3,1]])
- >>> a.sort(axis=1)
- >>> a
- array([[1, 4],
- [1, 3]])
- >>> a.sort(axis=0)
- >>> a
- array([[1, 3],
- [1, 4]])
-
- Use the `order` keyword to specify a field to use when sorting a
- structured array:
-
- >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
- >>> a.sort(order='y')
- >>> a
- array([('c', 1), ('a', 2)],
- dtype=[('x', '|S1'), ('y', '<i4')])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('partition',
- """
- a.partition(kth, axis=-1, kind='introselect', order=None)
-
- Rearranges the elements in the array in such a way that the value of the
- element in kth position is in the position it would be in a sorted array.
- All elements smaller than the kth element are moved before this element and
- all equal or greater are moved behind it. The ordering of the elements in
- the two partitions is undefined.
-
- .. versionadded:: 1.8.0
-
- Parameters
- ----------
- kth : int or sequence of ints
- Element index to partition by. The kth element value will be in its
- final sorted position and all smaller elements will be moved before it
- and all equal or greater elements behind it.
- The order of all elements in the partitions is undefined.
- If provided with a sequence of kth it will partition all elements
- indexed by kth of them into their sorted position at once.
- axis : int, optional
- Axis along which to sort. Default is -1, which means sort along the
- last axis.
- kind : {'introselect'}, optional
- Selection algorithm. Default is 'introselect'.
- order : str or list of str, optional
- When `a` is an array with fields defined, this argument specifies
- which fields to compare first, second, etc. A single field can
- be specified as a string, and not all fields need to be specified,
- but unspecified fields will still be used, in the order in which
- they come up in the dtype, to break ties.
-
- See Also
- --------
- numpy.partition : Return a parititioned copy of an array.
- argpartition : Indirect partition.
- sort : Full sort.
-
- Notes
- -----
- See ``np.partition`` for notes on the different algorithms.
-
- Examples
- --------
- >>> a = np.array([3, 4, 2, 1])
- >>> a.partition(3)
- >>> a
- array([2, 1, 3, 4])
-
- >>> a.partition((1, 3))
- array([1, 2, 3, 4])
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
- """
- a.squeeze(axis=None)
-
- Remove single-dimensional entries from the shape of `a`.
-
- Refer to `numpy.squeeze` for full documentation.
-
- See Also
- --------
- numpy.squeeze : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
- """
- a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
-
- Returns the standard deviation of the array elements along given axis.
-
- Refer to `numpy.std` for full documentation.
-
- See Also
- --------
- numpy.std : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
- """
- a.sum(axis=None, dtype=None, out=None, keepdims=False)
-
- Return the sum of the array elements over the given axis.
-
- Refer to `numpy.sum` for full documentation.
-
- See Also
- --------
- numpy.sum : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
- """
- a.swapaxes(axis1, axis2)
-
- Return a view of the array with `axis1` and `axis2` interchanged.
-
- Refer to `numpy.swapaxes` for full documentation.
-
- See Also
- --------
- numpy.swapaxes : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
- """
- a.take(indices, axis=None, out=None, mode='raise')
-
- Return an array formed from the elements of `a` at the given indices.
-
- Refer to `numpy.take` for full documentation.
-
- See Also
- --------
- numpy.take : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
- """
- a.tofile(fid, sep="", format="%s")
-
- Write array to a file as text or binary (default).
-
- Data is always written in 'C' order, independent of the order of `a`.
- The data produced by this method can be recovered using the function
- fromfile().
-
- Parameters
- ----------
- fid : file or str
- An open file object, or a string containing a filename.
- sep : str
- Separator between array items for text output.
- If "" (empty), a binary file is written, equivalent to
- ``file.write(a.tobytes())``.
- format : str
- Format string for text file output.
- Each entry in the array is formatted to text by first converting
- it to the closest Python type, and then using "format" % item.
-
- Notes
- -----
- This is a convenience function for quick storage of array data.
- Information on endianness and precision is lost, so this method is not a
- good choice for files intended to archive data or transport data between
- machines with different endianness. Some of these problems can be overcome
- by outputting the data as text files, at the expense of speed and file
- size.
-
- When fid is a file object, array contents are directly written to the
- file, bypassing the file object's ``write`` method. As a result, tofile
- cannot be used with files objects supporting compression (e.g., GzipFile)
- or file-like objects that do not support ``fileno()`` (e.g., BytesIO).
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
- """
- a.tolist()
-
- Return the array as a (possibly nested) list.
-
- Return a copy of the array data as a (nested) Python list.
- Data items are converted to the nearest compatible Python type.
-
- Parameters
- ----------
- none
-
- Returns
- -------
- y : list
- The possibly nested list of array elements.
-
- Notes
- -----
- The array may be recreated, ``a = np.array(a.tolist())``.
-
- Examples
- --------
- >>> a = np.array([1, 2])
- >>> a.tolist()
- [1, 2]
- >>> a = np.array([[1, 2], [3, 4]])
- >>> list(a)
- [array([1, 2]), array([3, 4])]
- >>> a.tolist()
- [[1, 2], [3, 4]]
-
- """))
-
-
-tobytesdoc = """
- a.{name}(order='C')
-
- Construct Python bytes containing the raw data bytes in the array.
-
- Constructs Python bytes showing a copy of the raw contents of
- data memory. The bytes object can be produced in either 'C' or 'Fortran',
- or 'Any' order (the default is 'C'-order). 'Any' order means C-order
- unless the F_CONTIGUOUS flag in the array is set, in which case it
- means 'Fortran' order.
-
- {deprecated}
-
- Parameters
- ----------
- order : {{'C', 'F', None}}, optional
- Order of the data for multidimensional arrays:
- C, Fortran, or the same as for the original array.
-
- Returns
- -------
- s : bytes
- Python bytes exhibiting a copy of `a`'s raw data.
-
- Examples
- --------
- >>> x = np.array([[0, 1], [2, 3]])
- >>> x.tobytes()
- b'\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x03\\x00\\x00\\x00'
- >>> x.tobytes('C') == x.tobytes()
- True
- >>> x.tobytes('F')
- b'\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x03\\x00\\x00\\x00'
-
- """
-
-add_newdoc('numpy.core.multiarray', 'ndarray',
- ('tostring', tobytesdoc.format(name='tostring',
- deprecated=
- 'This function is a compatibility '
- 'alias for tobytes. Despite its '
- 'name it returns bytes not '
- 'strings.')))
-add_newdoc('numpy.core.multiarray', 'ndarray',
- ('tobytes', tobytesdoc.format(name='tobytes',
- deprecated='.. versionadded:: 1.9.0')))
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
- """
- a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
-
- Return the sum along diagonals of the array.
-
- Refer to `numpy.trace` for full documentation.
-
- See Also
- --------
- numpy.trace : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
- """
- a.transpose(*axes)
-
- Returns a view of the array with axes transposed.
-
- For a 1-D array, this has no effect. (To change between column and
- row vectors, first cast the 1-D array into a matrix object.)
- For a 2-D array, this is the usual matrix transpose.
- For an n-D array, if axes are given, their order indicates how the
- axes are permuted (see Examples). If axes are not provided and
- ``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then
- ``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``.
-
- Parameters
- ----------
- axes : None, tuple of ints, or `n` ints
-
- * None or no argument: reverses the order of the axes.
-
- * tuple of ints: `i` in the `j`-th place in the tuple means `a`'s
- `i`-th axis becomes `a.transpose()`'s `j`-th axis.
-
- * `n` ints: same as an n-tuple of the same ints (this form is
- intended simply as a "convenience" alternative to the tuple form)
-
- Returns
- -------
- out : ndarray
- View of `a`, with axes suitably permuted.
-
- See Also
- --------
- ndarray.T : Array property returning the array transposed.
-
- Examples
- --------
- >>> a = np.array([[1, 2], [3, 4]])
- >>> a
- array([[1, 2],
- [3, 4]])
- >>> a.transpose()
- array([[1, 3],
- [2, 4]])
- >>> a.transpose((1, 0))
- array([[1, 3],
- [2, 4]])
- >>> a.transpose(1, 0)
- array([[1, 3],
- [2, 4]])
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
- """
- a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
-
- Returns the variance of the array elements, along given axis.
-
- Refer to `numpy.var` for full documentation.
-
- See Also
- --------
- numpy.var : equivalent function
-
- """))
-
-
-add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
- """
- a.view(dtype=None, type=None)
-
- New view of array with the same data.
-
- Parameters
- ----------
- dtype : data-type or ndarray sub-class, optional
- Data-type descriptor of the returned view, e.g., float32 or int16. The
- default, None, results in the view having the same data-type as `a`.
- This argument can also be specified as an ndarray sub-class, which
- then specifies the type of the returned object (this is equivalent to
- setting the ``type`` parameter).
- type : Python type, optional
- Type of the returned view, e.g., ndarray or matrix. Again, the
- default None results in type preservation.
-
- Notes
- -----
- ``a.view()`` is used two different ways:
-
- ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
- of the array's memory with a different data-type. This can cause a
- reinterpretation of the bytes of memory.
-
- ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
- returns an instance of `ndarray_subclass` that looks at the same array
- (same shape, dtype, etc.) This does not cause a reinterpretation of the
- memory.
-
- For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
- bytes per entry than the previous dtype (for example, converting a
- regular array to a structured array), then the behavior of the view
- cannot be predicted just from the superficial appearance of ``a`` (shown
- by ``print(a)``). It also depends on exactly how ``a`` is stored in
- memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
- defined as a slice or transpose, etc., the view may give different
- results.
-
-
- Examples
- --------
- >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
-
- Viewing array data using a different type and dtype:
-
- >>> y = x.view(dtype=np.int16, type=np.matrix)
- >>> y
- matrix([[513]], dtype=int16)
- >>> print(type(y))
- <class 'numpy.matrixlib.defmatrix.matrix'>
-
- Creating a view on a structured array so it can be used in calculations
-
- >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
- >>> xv = x.view(dtype=np.int8).reshape(-1,2)
- >>> xv
- array([[1, 2],
- [3, 4]], dtype=int8)
- >>> xv.mean(0)
- array([ 2., 3.])
-
- Making changes to the view changes the underlying array
-
- >>> xv[0,1] = 20
- >>> print(x)
- [(1, 20) (3, 4)]
-
- Using a view to convert an array to a recarray:
-
- >>> z = x.view(np.recarray)
- >>> z.a
- array([1], dtype=int8)
-
- Views share data:
-
- >>> x[0] = (9, 10)
- >>> z[0]
- (9, 10)
-
- Views that change the dtype size (bytes per entry) should normally be
- avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
-
- >>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
- >>> y = x[:, 0:2]
- >>> y
- array([[1, 2],
- [4, 5]], dtype=int16)
- >>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- ValueError: new type not compatible with array.
- >>> z = y.copy()
- >>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
- array([[(1, 2)],
- [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])
- """))
-
-
-##############################################################################
-#
-# umath functions
-#
-##############################################################################
-
-add_newdoc('numpy.core.umath', 'frompyfunc',
- """
- frompyfunc(func, nin, nout)
-
- Takes an arbitrary Python function and returns a NumPy ufunc.
-
- Can be used, for example, to add broadcasting to a built-in Python
- function (see Examples section).
-
- Parameters
- ----------
- func : Python function object
- An arbitrary Python function.
- nin : int
- The number of input arguments.
- nout : int
- The number of objects returned by `func`.
-
- Returns
- -------
- out : ufunc
- Returns a NumPy universal function (``ufunc``) object.
-
- See Also
- --------
- vectorize : evaluates pyfunc over input arrays using broadcasting rules of numpy
-
- Notes
- -----
- The returned ufunc always returns PyObject arrays.
-
- Examples
- --------
- Use frompyfunc to add broadcasting to the Python function ``oct``:
-
- >>> oct_array = np.frompyfunc(oct, 1, 1)
- >>> oct_array(np.array((10, 30, 100)))
- array([012, 036, 0144], dtype=object)
- >>> np.array((oct(10), oct(30), oct(100))) # for comparison
- array(['012', '036', '0144'],
- dtype='|S4')
-
- """)
-
-add_newdoc('numpy.core.umath', 'geterrobj',
- """
- geterrobj()
-
- Return the current object that defines floating-point error handling.
-
- The error object contains all information that defines the error handling
- behavior in NumPy. `geterrobj` is used internally by the other
- functions that get and set error handling behavior (`geterr`, `seterr`,
- `geterrcall`, `seterrcall`).
-
- Returns
- -------
- errobj : list
- The error object, a list containing three elements:
- [internal numpy buffer size, error mask, error callback function].
-
- The error mask is a single integer that holds the treatment information
- on all four floating point errors. The information for each error type
- is contained in three bits of the integer. If we print it in base 8, we
- can see what treatment is set for "invalid", "under", "over", and
- "divide" (in that order). The printed string can be interpreted with
-
- * 0 : 'ignore'
- * 1 : 'warn'
- * 2 : 'raise'
- * 3 : 'call'
- * 4 : 'print'
- * 5 : 'log'
-
- See Also
- --------
- seterrobj, seterr, geterr, seterrcall, geterrcall
- getbufsize, setbufsize
-
- Notes
- -----
- For complete documentation of the types of floating-point exceptions and
- treatment options, see `seterr`.
-
- Examples
- --------
- >>> np.geterrobj() # first get the defaults
- [10000, 0, None]
-
- >>> def err_handler(type, flag):
- ... print("Floating point error (%s), with flag %s" % (type, flag))
- ...
- >>> old_bufsize = np.setbufsize(20000)
- >>> old_err = np.seterr(divide='raise')
- >>> old_handler = np.seterrcall(err_handler)
- >>> np.geterrobj()
- [20000, 2, <function err_handler at 0x91dcaac>]
-
- >>> old_err = np.seterr(all='ignore')
- >>> np.base_repr(np.geterrobj()[1], 8)
- '0'
- >>> old_err = np.seterr(divide='warn', over='log', under='call',
- invalid='print')
- >>> np.base_repr(np.geterrobj()[1], 8)
- '4351'
-
- """)
-
-add_newdoc('numpy.core.umath', 'seterrobj',
- """
- seterrobj(errobj)
-
- Set the object that defines floating-point error handling.
-
- The error object contains all information that defines the error handling
- behavior in NumPy. `seterrobj` is used internally by the other
- functions that set error handling behavior (`seterr`, `seterrcall`).
-
- Parameters
- ----------
- errobj : list
- The error object, a list containing three elements:
- [internal numpy buffer size, error mask, error callback function].
-
- The error mask is a single integer that holds the treatment information
- on all four floating point errors. The information for each error type
- is contained in three bits of the integer. If we print it in base 8, we
- can see what treatment is set for "invalid", "under", "over", and
- "divide" (in that order). The printed string can be interpreted with
-
- * 0 : 'ignore'
- * 1 : 'warn'
- * 2 : 'raise'
- * 3 : 'call'
- * 4 : 'print'
- * 5 : 'log'
-
- See Also
- --------
- geterrobj, seterr, geterr, seterrcall, geterrcall
- getbufsize, setbufsize
-
- Notes
- -----
- For complete documentation of the types of floating-point exceptions and
- treatment options, see `seterr`.
-
- Examples
- --------
- >>> old_errobj = np.geterrobj() # first get the defaults
- >>> old_errobj
- [10000, 0, None]
-
- >>> def err_handler(type, flag):
- ... print("Floating point error (%s), with flag %s" % (type, flag))
- ...
- >>> new_errobj = [20000, 12, err_handler]
- >>> np.seterrobj(new_errobj)
- >>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
- '14'
- >>> np.geterr()
- {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
- >>> np.geterrcall() is err_handler
- True
-
- """)
-
-
-##############################################################################
-#
-# compiled_base functions
-#
-##############################################################################
-
-add_newdoc('numpy.core.multiarray', 'digitize',
- """
- digitize(x, bins, right=False)
-
- Return the indices of the bins to which each value in input array belongs.
-
- ========= ============= ============================
- `right` order of bins returned index `i` satisfies
- ========= ============= ============================
- ``False`` increasing ``bins[i-1] <= x < bins[i]``
- ``True`` increasing ``bins[i-1] < x <= bins[i]``
- ``False`` decreasing ``bins[i-1] > x >= bins[i]``
- ``True`` decreasing ``bins[i-1] >= x > bins[i]``
- ========= ============= ============================
-
- If values in `x` are beyond the bounds of `bins`, 0 or ``len(bins)`` is
- returned as appropriate.
-
- Parameters
- ----------
- x : array_like
- Input array to be binned. Prior to NumPy 1.10.0, this array had to
- be 1-dimensional, but can now have any shape.
- bins : array_like
- Array of bins. It has to be 1-dimensional and monotonic.
- right : bool, optional
- Indicating whether the intervals include the right or the left bin
- edge. Default behavior is (right==False) indicating that the interval
- does not include the right edge. The left bin end is open in this
- case, i.e., bins[i-1] <= x < bins[i] is the default behavior for
- monotonically increasing bins.
-
- Returns
- -------
- indices : ndarray of ints
- Output array of indices, of same shape as `x`.
-
- Raises
- ------
- ValueError
- If `bins` is not monotonic.
- TypeError
- If the type of the input is complex.
-
- See Also
- --------
- bincount, histogram, unique, searchsorted
-
- Notes
- -----
- If values in `x` are such that they fall outside the bin range,
- attempting to index `bins` with the indices that `digitize` returns
- will result in an IndexError.
-
- .. versionadded:: 1.10.0
-
- `np.digitize` is implemented in terms of `np.searchsorted`. This means
- that a binary search is used to bin the values, which scales much better
- for larger number of bins than the previous linear search. It also removes
- the requirement for the input array to be 1-dimensional.
-
- For monotonically _increasing_ `bins`, the following are equivalent::
-
- np.digitize(x, bins, right=True)
- np.searchsorted(bins, x, side='left')
-
- Note that as the order of the arguments are reversed, the side must be too.
- The `searchsorted` call is marginally faster, as it does not do any
- monotonicity checks. Perhaps more importantly, it supports all dtypes.
-
- Examples
- --------
- >>> x = np.array([0.2, 6.4, 3.0, 1.6])
- >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
- >>> inds = np.digitize(x, bins)
- >>> inds
- array([1, 4, 3, 2])
- >>> for n in range(x.size):
- ... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]])
- ...
- 0.0 <= 0.2 < 1.0
- 4.0 <= 6.4 < 10.0
- 2.5 <= 3.0 < 4.0
- 1.0 <= 1.6 < 2.5
-
- >>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
- >>> bins = np.array([0, 5, 10, 15, 20])
- >>> np.digitize(x,bins,right=True)
- array([1, 2, 3, 4, 4])
- >>> np.digitize(x,bins,right=False)
- array([1, 3, 3, 4, 5])
- """)
-
-add_newdoc('numpy.core.multiarray', 'bincount',
- """
- bincount(x, weights=None, minlength=0)
-
- Count number of occurrences of each value in array of non-negative ints.
-
- The number of bins (of size 1) is one larger than the largest value in
- `x`. If `minlength` is specified, there will be at least this number
- of bins in the output array (though it will be longer if necessary,
- depending on the contents of `x`).
- Each bin gives the number of occurrences of its index value in `x`.
- If `weights` is specified the input array is weighted by it, i.e. if a
- value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
- of ``out[n] += 1``.
-
- Parameters
- ----------
- x : array_like, 1 dimension, nonnegative ints
- Input array.
- weights : array_like, optional
- Weights, array of the same shape as `x`.
- minlength : int, optional
- A minimum number of bins for the output array.
-
- .. versionadded:: 1.6.0
-
- Returns
- -------
- out : ndarray of ints
- The result of binning the input array.
- The length of `out` is equal to ``np.amax(x)+1``.
-
- Raises
- ------
- ValueError
- If the input is not 1-dimensional, or contains elements with negative
- values, or if `minlength` is negative.
- TypeError
- If the type of the input is float or complex.
-
- See Also
- --------
- histogram, digitize, unique
-
- Examples
- --------
- >>> np.bincount(np.arange(5))
- array([1, 1, 1, 1, 1])
- >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
- array([1, 3, 1, 1, 0, 0, 0, 1])
-
- >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
- >>> np.bincount(x).size == np.amax(x)+1
- True
-
- The input array needs to be of integer dtype, otherwise a
- TypeError is raised:
-
- >>> np.bincount(np.arange(5, dtype=float))
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- TypeError: array cannot be safely cast to required type
-
- A possible use of ``bincount`` is to perform sums over
- variable-size chunks of an array, using the ``weights`` keyword.
-
- >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
- >>> x = np.array([0, 1, 1, 2, 2, 2])
- >>> np.bincount(x, weights=w)
- array([ 0.3, 0.7, 1.1])
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'ravel_multi_index',
- """
- ravel_multi_index(multi_index, dims, mode='raise', order='C')
-
- Converts a tuple of index arrays into an array of flat
- indices, applying boundary modes to the multi-index.
-
- Parameters
- ----------
- multi_index : tuple of array_like
- A tuple of integer arrays, one array for each dimension.
- dims : tuple of ints
- The shape of array into which the indices from ``multi_index`` apply.
- mode : {'raise', 'wrap', 'clip'}, optional
- Specifies how out-of-bounds indices are handled. Can specify
- either one mode or a tuple of modes, one mode per index.
-
- * 'raise' -- raise an error (default)
- * 'wrap' -- wrap around
- * 'clip' -- clip to the range
-
- In 'clip' mode, a negative index which would normally
- wrap will clip to 0 instead.
- order : {'C', 'F'}, optional
- Determines whether the multi-index should be viewed as
- indexing in row-major (C-style) or column-major
- (Fortran-style) order.
-
- Returns
- -------
- raveled_indices : ndarray
- An array of indices into the flattened version of an array
- of dimensions ``dims``.
-
- See Also
- --------
- unravel_index
-
- Notes
- -----
- .. versionadded:: 1.6.0
-
- Examples
- --------
- >>> arr = np.array([[3,6,6],[4,5,1]])
- >>> np.ravel_multi_index(arr, (7,6))
- array([22, 41, 37])
- >>> np.ravel_multi_index(arr, (7,6), order='F')
- array([31, 41, 13])
- >>> np.ravel_multi_index(arr, (4,6), mode='clip')
- array([22, 23, 19])
- >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
- array([12, 13, 13])
-
- >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
- 1621
- """)
-
-add_newdoc('numpy.core.multiarray', 'unravel_index',
- """
- unravel_index(indices, dims, order='C')
-
- Converts a flat index or array of flat indices into a tuple
- of coordinate arrays.
-
- Parameters
- ----------
- indices : array_like
- An integer array whose elements are indices into the flattened
- version of an array of dimensions ``dims``. Before version 1.6.0,
- this function accepted just one index value.
- dims : tuple of ints
- The shape of the array to use for unraveling ``indices``.
- order : {'C', 'F'}, optional
- Determines whether the indices should be viewed as indexing in
- row-major (C-style) or column-major (Fortran-style) order.
-
- .. versionadded:: 1.6.0
-
- Returns
- -------
- unraveled_coords : tuple of ndarray
- Each array in the tuple has the same shape as the ``indices``
- array.
-
- See Also
- --------
- ravel_multi_index
-
- Examples
- --------
- >>> np.unravel_index([22, 41, 37], (7,6))
- (array([3, 6, 6]), array([4, 5, 1]))
- >>> np.unravel_index([31, 41, 13], (7,6), order='F')
- (array([3, 6, 6]), array([4, 5, 1]))
-
- >>> np.unravel_index(1621, (6,7,8,9))
- (3, 1, 4, 1)
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'add_docstring',
- """
- add_docstring(obj, docstring)
-
- Add a docstring to a built-in obj if possible.
- If the obj already has a docstring raise a RuntimeError
- If this routine does not know how to add a docstring to the object
- raise a TypeError
- """)
-
-add_newdoc('numpy.core.umath', '_add_newdoc_ufunc',
- """
- add_ufunc_docstring(ufunc, new_docstring)
-
- Replace the docstring for a ufunc with new_docstring.
- This method will only work if the current docstring for
- the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.)
-
- Parameters
- ----------
- ufunc : numpy.ufunc
- A ufunc whose current doc is NULL.
- new_docstring : string
- The new docstring for the ufunc.
-
- Notes
- -----
- This method allocates memory for new_docstring on
- the heap. Technically this creates a mempory leak, since this
- memory will not be reclaimed until the end of the program
- even if the ufunc itself is removed. However this will only
- be a problem if the user is repeatedly creating ufuncs with
- no documentation, adding documentation via add_newdoc_ufunc,
- and then throwing away the ufunc.
- """)
-
-add_newdoc('numpy.core.multiarray', 'packbits',
- """
- packbits(myarray, axis=None)
-
- Packs the elements of a binary-valued array into bits in a uint8 array.
-
- The result is padded to full bytes by inserting zero bits at the end.
-
- Parameters
- ----------
- myarray : array_like
- An array of integers or booleans whose elements should be packed to
- bits.
- axis : int, optional
- The dimension over which bit-packing is done.
- ``None`` implies packing the flattened array.
-
- Returns
- -------
- packed : ndarray
- Array of type uint8 whose elements represent bits corresponding to the
- logical (0 or nonzero) value of the input elements. The shape of
- `packed` has the same number of dimensions as the input (unless `axis`
- is None, in which case the output is 1-D).
-
- See Also
- --------
- unpackbits: Unpacks elements of a uint8 array into a binary-valued output
- array.
-
- Examples
- --------
- >>> a = np.array([[[1,0,1],
- ... [0,1,0]],
- ... [[1,1,0],
- ... [0,0,1]]])
- >>> b = np.packbits(a, axis=-1)
- >>> b
- array([[[160],[64]],[[192],[32]]], dtype=uint8)
-
- Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
- and 32 = 0010 0000.
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'unpackbits',
- """
- unpackbits(myarray, axis=None)
-
- Unpacks elements of a uint8 array into a binary-valued output array.
-
- Each element of `myarray` represents a bit-field that should be unpacked
- into a binary-valued output array. The shape of the output array is either
- 1-D (if `axis` is None) or the same shape as the input array with unpacking
- done along the axis specified.
-
- Parameters
- ----------
- myarray : ndarray, uint8 type
- Input array.
- axis : int, optional
- The dimension over which bit-unpacking is done.
- ``None`` implies unpacking the flattened array.
-
- Returns
- -------
- unpacked : ndarray, uint8 type
- The elements are binary-valued (0 or 1).
-
- See Also
- --------
- packbits : Packs the elements of a binary-valued array into bits in a uint8
- array.
-
- Examples
- --------
- >>> a = np.array([[2], [7], [23]], dtype=np.uint8)
- >>> a
- array([[ 2],
- [ 7],
- [23]], dtype=uint8)
- >>> b = np.unpackbits(a, axis=1)
- >>> b
- array([[0, 0, 0, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
-
- """)
-
-add_newdoc('numpy.core._multiarray_tests', 'format_float_OSprintf_g',
- """
- format_float_OSprintf_g(val, precision)
-
- Print a floating point scalar using the system's printf function,
- equivalent to:
-
- printf("%.*g", precision, val);
-
- for half/float/double, or replacing 'g' by 'Lg' for longdouble. This
- method is designed to help cross-validate the format_float_* methods.
-
- Parameters
- ----------
- val : python float or numpy floating scalar
- Value to format.
-
- precision : non-negative integer, optional
- Precision given to printf.
-
- Returns
- -------
- rep : string
- The string representation of the floating point value
-
- See Also
- --------
- format_float_scientific
- format_float_positional
- """)
-
-
-##############################################################################
-#
-# Documentation for ufunc attributes and methods
-#
-##############################################################################
-
-
-##############################################################################
-#
-# ufunc object
-#
-##############################################################################
-
-add_newdoc('numpy.core', 'ufunc',
- """
- Functions that operate element by element on whole arrays.
-
- To see the documentation for a specific ufunc, use `info`. For
- example, ``np.info(np.sin)``. Because ufuncs are written in C
- (for speed) and linked into Python with NumPy's ufunc facility,
- Python's help() function finds this page whenever help() is called
- on a ufunc.
-
- A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`.
-
- Calling ufuncs:
- ===============
-
- op(*x[, out], where=True, **kwargs)
- Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.
-
- The broadcasting rules are:
-
- * Dimensions of length 1 may be prepended to either array.
- * Arrays may be repeated along dimensions of length 1.
-
- Parameters
- ----------
- *x : array_like
- Input arrays.
- out : ndarray, None, or tuple of ndarray and None, optional
- Alternate array object(s) in which to put the result; if provided, it
- must have a shape that the inputs broadcast to. A tuple of arrays
- (possible only as a keyword argument) must have length equal to the
- number of outputs; use `None` for uninitialized outputs to be
- allocated by the ufunc.
- where : array_like, optional
- Values of True indicate to calculate the ufunc at that position, values
- of False indicate to leave the value in the output alone. Note that if
- an uninitialized return array is created via the default ``out=None``,
- then the elements where the values are False will remain uninitialized.
- **kwargs
- For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.
-
- Returns
- -------
- r : ndarray or tuple of ndarray
- `r` will have the shape that the arrays in `x` broadcast to; if `out` is
- provided, it will be returned. If not, `r` will be allocated and
- may contain uninitialized values. If the function has more than one
- output, then the result will be a tuple of arrays.
-
- """)
-
-
-##############################################################################
-#
-# ufunc attributes
-#
-##############################################################################
-
-add_newdoc('numpy.core', 'ufunc', ('identity',
- """
- The identity value.
-
- Data attribute containing the identity element for the ufunc, if it has one.
- If it does not, the attribute value is None.
-
- Examples
- --------
- >>> np.add.identity
- 0
- >>> np.multiply.identity
- 1
- >>> np.power.identity
- 1
- >>> print(np.exp.identity)
- None
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('nargs',
- """
- The number of arguments.
-
- Data attribute containing the number of arguments the ufunc takes, including
- optional ones.
-
- Notes
- -----
- Typically this value will be one more than what you might expect because all
- ufuncs take the optional "out" argument.
-
- Examples
- --------
- >>> np.add.nargs
- 3
- >>> np.multiply.nargs
- 3
- >>> np.power.nargs
- 3
- >>> np.exp.nargs
- 2
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('nin',
- """
- The number of inputs.
-
- Data attribute containing the number of arguments the ufunc treats as input.
-
- Examples
- --------
- >>> np.add.nin
- 2
- >>> np.multiply.nin
- 2
- >>> np.power.nin
- 2
- >>> np.exp.nin
- 1
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('nout',
- """
- The number of outputs.
-
- Data attribute containing the number of arguments the ufunc treats as output.
-
- Notes
- -----
- Since all ufuncs can take output arguments, this will always be (at least) 1.
-
- Examples
- --------
- >>> np.add.nout
- 1
- >>> np.multiply.nout
- 1
- >>> np.power.nout
- 1
- >>> np.exp.nout
- 1
-
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('ntypes',
- """
- The number of types.
-
- The number of numerical NumPy types - of which there are 18 total - on which
- the ufunc can operate.
-
- See Also
- --------
- numpy.ufunc.types
-
- Examples
- --------
- >>> np.add.ntypes
- 18
- >>> np.multiply.ntypes
- 18
- >>> np.power.ntypes
- 17
- >>> np.exp.ntypes
- 7
- >>> np.remainder.ntypes
- 14
-
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('types',
- """
- Returns a list with types grouped input->output.
-
- Data attribute listing the data-type "Domain-Range" groupings the ufunc can
- deliver. The data-types are given using the character codes.
-
- See Also
- --------
- numpy.ufunc.ntypes
-
- Examples
- --------
- >>> np.add.types
- ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
- 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
- 'GG->G', 'OO->O']
-
- >>> np.multiply.types
- ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
- 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
- 'GG->G', 'OO->O']
-
- >>> np.power.types
- ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
- 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
- 'OO->O']
-
- >>> np.exp.types
- ['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
-
- >>> np.remainder.types
- ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
- 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']
-
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('signature',
- """
- Definition of the core elements a generalized ufunc operates on.
-
- The signature determines how the dimensions of each input/output array
- are split into core and loop dimensions:
-
- 1. Each dimension in the signature is matched to a dimension of the
- corresponding passed-in array, starting from the end of the shape tuple.
- 2. Core dimensions assigned to the same label in the signature must have
- exactly matching sizes, no broadcasting is performed.
- 3. The core dimensions are removed from all inputs and the remaining
- dimensions are broadcast together, defining the loop dimensions.
-
- Notes
- -----
- Generalized ufuncs are used internally in many linalg functions, and in
- the testing suite; the examples below are taken from these.
- For ufuncs that operate on scalars, the signature is `None`, which is
- equivalent to '()' for every argument.
-
- Examples
- --------
- >>> np.core.umath_tests.matrix_multiply.signature
- '(m,n),(n,p)->(m,p)'
- >>> np.linalg._umath_linalg.det.signature
- '(m,m)->()'
- >>> np.add.signature is None
- True # equivalent to '(),()->()'
- """))
-
-##############################################################################
-#
-# ufunc methods
-#
-##############################################################################
-
-add_newdoc('numpy.core', 'ufunc', ('reduce',
- """
- reduce(a, axis=0, dtype=None, out=None, keepdims=False, initial)
-
- Reduces `a`'s dimension by one, by applying ufunc along one axis.
-
- Let :math:`a.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then
- :math:`ufunc.reduce(a, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
- the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
- ufunc to each :math:`a[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
- For a one-dimensional array, reduce produces results equivalent to:
- ::
-
- r = op.identity # op = ufunc
- for i in range(len(A)):
- r = op(r, A[i])
- return r
-
- For example, add.reduce() is equivalent to sum().
-
- Parameters
- ----------
- a : array_like
- The array to act on.
- axis : None or int or tuple of ints, optional
- Axis or axes along which a reduction is performed.
- The default (`axis` = 0) is perform a reduction over the first
- dimension of the input array. `axis` may be negative, in
- which case it counts from the last to the first axis.
-
- .. versionadded:: 1.7.0
-
- If this is `None`, a reduction is performed over all the axes.
- If this is a tuple of ints, a reduction is performed on multiple
- axes, instead of a single axis or all the axes as before.
-
- For operations which are either not commutative or not associative,
- doing a reduction over multiple axes is not well-defined. The
- ufuncs do not currently raise an exception in this case, but will
- likely do so in the future.
- dtype : data-type code, optional
- The type used to represent the intermediate results. Defaults
- to the data-type of the output array if this is provided, or
- the data-type of the input array if no output array is provided.
- out : ndarray, None, or tuple of ndarray and None, optional
- A location into which the result is stored. If not provided or `None`,
- a freshly-allocated array is returned. For consistency with
- :ref:`ufunc.__call__`, if given as a keyword, this may be wrapped in a
- 1-element tuple.
-
- .. versionchanged:: 1.13.0
- Tuples are allowed for keyword argument.
- keepdims : bool, optional
- If this is set to True, the axes which are reduced are left
- in the result as dimensions with size one. With this option,
- the result will broadcast correctly against the original `arr`.
-
- .. versionadded:: 1.7.0
- initial : scalar, optional
- The value with which to start the reduction.
- If the ufunc has no identity or the dtype is object, this defaults
- to None - otherwise it defaults to ufunc.identity.
- If ``None`` is given, the first element of the reduction is used,
- and an error is thrown if the reduction is empty.
-
- .. versionadded:: 1.15.0
-
- Returns
- -------
- r : ndarray
- The reduced array. If `out` was supplied, `r` is a reference to it.
-
- Examples
- --------
- >>> np.multiply.reduce([2,3,5])
- 30
-
- A multi-dimensional array example:
-
- >>> X = np.arange(8).reshape((2,2,2))
- >>> X
- array([[[0, 1],
- [2, 3]],
- [[4, 5],
- [6, 7]]])
- >>> np.add.reduce(X, 0)
- array([[ 4, 6],
- [ 8, 10]])
- >>> np.add.reduce(X) # confirm: default axis value is 0
- array([[ 4, 6],
- [ 8, 10]])
- >>> np.add.reduce(X, 1)
- array([[ 2, 4],
- [10, 12]])
- >>> np.add.reduce(X, 2)
- array([[ 1, 5],
- [ 9, 13]])
-
- You can use the ``initial`` keyword argument to initialize the reduction with a
- different value.
-
- >>> np.add.reduce([10], initial=5)
- 15
- >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initializer=10)
- array([14., 14.])
-
- Allows reductions of empty arrays where they would normally fail, i.e.
- for ufuncs without an identity.
-
- >>> np.minimum.reduce([], initial=np.inf)
- inf
- >>> np.minimum.reduce([])
- Traceback (most recent call last):
- ...
- ValueError: zero-size array to reduction operation minimum which has no identity
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('accumulate',
- """
- accumulate(array, axis=0, dtype=None, out=None)
-
- Accumulate the result of applying the operator to all elements.
-
- For a one-dimensional array, accumulate produces results equivalent to::
-
- r = np.empty(len(A))
- t = op.identity # op = the ufunc being applied to A's elements
- for i in range(len(A)):
- t = op(t, A[i])
- r[i] = t
- return r
-
- For example, add.accumulate() is equivalent to np.cumsum().
-
- For a multi-dimensional array, accumulate is applied along only one
- axis (axis zero by default; see Examples below) so repeated use is
- necessary if one wants to accumulate over multiple axes.
-
- Parameters
- ----------
- array : array_like
- The array to act on.
- axis : int, optional
- The axis along which to apply the accumulation; default is zero.
- dtype : data-type code, optional
- The data-type used to represent the intermediate results. Defaults
- to the data-type of the output array if such is provided, or the
- the data-type of the input array if no output array is provided.
- out : ndarray, None, or tuple of ndarray and None, optional
- A location into which the result is stored. If not provided or `None`,
- a freshly-allocated array is returned. For consistency with
- :ref:`ufunc.__call__`, if given as a keyword, this may be wrapped in a
- 1-element tuple.
-
- .. versionchanged:: 1.13.0
- Tuples are allowed for keyword argument.
-
- Returns
- -------
- r : ndarray
- The accumulated values. If `out` was supplied, `r` is a reference to
- `out`.
-
- Examples
- --------
- 1-D array examples:
-
- >>> np.add.accumulate([2, 3, 5])
- array([ 2, 5, 10])
- >>> np.multiply.accumulate([2, 3, 5])
- array([ 2, 6, 30])
-
- 2-D array examples:
-
- >>> I = np.eye(2)
- >>> I
- array([[ 1., 0.],
- [ 0., 1.]])
-
- Accumulate along axis 0 (rows), down columns:
-
- >>> np.add.accumulate(I, 0)
- array([[ 1., 0.],
- [ 1., 1.]])
- >>> np.add.accumulate(I) # no axis specified = axis zero
- array([[ 1., 0.],
- [ 1., 1.]])
-
- Accumulate along axis 1 (columns), through rows:
-
- >>> np.add.accumulate(I, 1)
- array([[ 1., 1.],
- [ 0., 1.]])
-
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('reduceat',
- """
- reduceat(a, indices, axis=0, dtype=None, out=None)
-
- Performs a (local) reduce with specified slices over a single axis.
-
- For i in ``range(len(indices))``, `reduceat` computes
- ``ufunc.reduce(a[indices[i]:indices[i+1]])``, which becomes the i-th
- generalized "row" parallel to `axis` in the final result (i.e., in a
- 2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
- `axis = 1`, it becomes the i-th column). There are three exceptions to this:
-
- * when ``i = len(indices) - 1`` (so for the last index),
- ``indices[i+1] = a.shape[axis]``.
- * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
- simply ``a[indices[i]]``.
- * if ``indices[i] >= len(a)`` or ``indices[i] < 0``, an error is raised.
-
- The shape of the output depends on the size of `indices`, and may be
- larger than `a` (this happens if ``len(indices) > a.shape[axis]``).
-
- Parameters
- ----------
- a : array_like
- The array to act on.
- indices : array_like
- Paired indices, comma separated (not colon), specifying slices to
- reduce.
- axis : int, optional
- The axis along which to apply the reduceat.
- dtype : data-type code, optional
- The type used to represent the intermediate results. Defaults
- to the data type of the output array if this is provided, or
- the data type of the input array if no output array is provided.
- out : ndarray, None, or tuple of ndarray and None, optional
- A location into which the result is stored. If not provided or `None`,
- a freshly-allocated array is returned. For consistency with
- :ref:`ufunc.__call__`, if given as a keyword, this may be wrapped in a
- 1-element tuple.
-
- .. versionchanged:: 1.13.0
- Tuples are allowed for keyword argument.
-
- Returns
- -------
- r : ndarray
- The reduced values. If `out` was supplied, `r` is a reference to
- `out`.
-
- Notes
- -----
- A descriptive example:
-
- If `a` is 1-D, the function `ufunc.accumulate(a)` is the same as
- ``ufunc.reduceat(a, indices)[::2]`` where `indices` is
- ``range(len(array) - 1)`` with a zero placed
- in every other element:
- ``indices = zeros(2 * len(a) - 1)``, ``indices[1::2] = range(1, len(a))``.
-
- Don't be fooled by this attribute's name: `reduceat(a)` is not
- necessarily smaller than `a`.
-
- Examples
- --------
- To take the running sum of four successive values:
-
- >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
- array([ 6, 10, 14, 18])
-
- A 2-D example:
-
- >>> x = np.linspace(0, 15, 16).reshape(4,4)
- >>> x
- array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])
-
- ::
-
- # reduce such that the result has the following five rows:
- # [row1 + row2 + row3]
- # [row4]
- # [row2]
- # [row3]
- # [row1 + row2 + row3 + row4]
-
- >>> np.add.reduceat(x, [0, 3, 1, 2, 0])
- array([[ 12., 15., 18., 21.],
- [ 12., 13., 14., 15.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 24., 28., 32., 36.]])
-
- ::
-
- # reduce such that result has the following two columns:
- # [col1 * col2 * col3, col4]
-
- >>> np.multiply.reduceat(x, [0, 3], 1)
- array([[ 0., 3.],
- [ 120., 7.],
- [ 720., 11.],
- [ 2184., 15.]])
-
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('outer',
- """
- outer(A, B, **kwargs)
-
- Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
-
- Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
- ``op.outer(A, B)`` is an array of dimension M + N such that:
-
- .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
- op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
-
- For `A` and `B` one-dimensional, this is equivalent to::
-
- r = empty(len(A),len(B))
- for i in range(len(A)):
- for j in range(len(B)):
- r[i,j] = op(A[i], B[j]) # op = ufunc in question
-
- Parameters
- ----------
- A : array_like
- First array
- B : array_like
- Second array
- kwargs : any
- Arguments to pass on to the ufunc. Typically `dtype` or `out`.
-
- Returns
- -------
- r : ndarray
- Output array
-
- See Also
- --------
- numpy.outer
-
- Examples
- --------
- >>> np.multiply.outer([1, 2, 3], [4, 5, 6])
- array([[ 4, 5, 6],
- [ 8, 10, 12],
- [12, 15, 18]])
-
- A multi-dimensional example:
-
- >>> A = np.array([[1, 2, 3], [4, 5, 6]])
- >>> A.shape
- (2, 3)
- >>> B = np.array([[1, 2, 3, 4]])
- >>> B.shape
- (1, 4)
- >>> C = np.multiply.outer(A, B)
- >>> C.shape; C
- (2, 3, 1, 4)
- array([[[[ 1, 2, 3, 4]],
- [[ 2, 4, 6, 8]],
- [[ 3, 6, 9, 12]]],
- [[[ 4, 8, 12, 16]],
- [[ 5, 10, 15, 20]],
- [[ 6, 12, 18, 24]]]])
-
- """))
-
-add_newdoc('numpy.core', 'ufunc', ('at',
- """
- at(a, indices, b=None)
-
- Performs unbuffered in place operation on operand 'a' for elements
- specified by 'indices'. For addition ufunc, this method is equivalent to
- ``a[indices] += b``, except that results are accumulated for elements that
- are indexed more than once. For example, ``a[[0,0]] += 1`` will only
- increment the first element once because of buffering, whereas
- ``add.at(a, [0,0], 1)`` will increment the first element twice.
-
- .. versionadded:: 1.8.0
-
- Parameters
- ----------
- a : array_like
- The array to perform in place operation on.
- indices : array_like or tuple
- Array like index object or slice object for indexing into first
- operand. If first operand has multiple dimensions, indices can be a
- tuple of array like index objects or slice objects.
- b : array_like
- Second operand for ufuncs requiring two operands. Operand must be
- broadcastable over first operand after indexing or slicing.
-
- Examples
- --------
- Set items 0 and 1 to their negative values:
-
- >>> a = np.array([1, 2, 3, 4])
- >>> np.negative.at(a, [0, 1])
- >>> print(a)
- array([-1, -2, 3, 4])
-
- Increment items 0 and 1, and increment item 2 twice:
-
- >>> a = np.array([1, 2, 3, 4])
- >>> np.add.at(a, [0, 1, 2, 2], 1)
- >>> print(a)
- array([2, 3, 5, 4])
-
- Add items 0 and 1 in first array to second array,
- and store results in first array:
-
- >>> a = np.array([1, 2, 3, 4])
- >>> b = np.array([1, 2])
- >>> np.add.at(a, [0, 1], b)
- >>> print(a)
- array([2, 4, 3, 4])
-
- """))
-
-##############################################################################
-#
-# Documentation for dtype attributes and methods
-#
-##############################################################################
-
-##############################################################################
-#
-# dtype object
-#
-##############################################################################
-
-add_newdoc('numpy.core.multiarray', 'dtype',
- """
- dtype(obj, align=False, copy=False)
-
- Create a data type object.
-
- A numpy array is homogeneous, and contains elements described by a
- dtype object. A dtype object can be constructed from different
- combinations of fundamental numeric types.
-
- Parameters
- ----------
- obj
- Object to be converted to a data type object.
- align : bool, optional
- Add padding to the fields to match what a C compiler would output
- for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
- or a comma-separated string. If a struct dtype is being created,
- this also sets a sticky alignment flag ``isalignedstruct``.
- copy : bool, optional
- Make a new copy of the data-type object. If ``False``, the result
- may just be a reference to a built-in data-type object.
-
- See also
- --------
- result_type
-
- Examples
- --------
- Using array-scalar type:
-
- >>> np.dtype(np.int16)
- dtype('int16')
-
- Structured type, one field name 'f1', containing int16:
-
- >>> np.dtype([('f1', np.int16)])
- dtype([('f1', '<i2')])
-
- Structured type, one field named 'f1', in itself containing a structured
- type with one field:
-
- >>> np.dtype([('f1', [('f1', np.int16)])])
- dtype([('f1', [('f1', '<i2')])])
-
- Structured type, two fields: the first field contains an unsigned int, the
- second an int32:
-
- >>> np.dtype([('f1', np.uint), ('f2', np.int32)])
- dtype([('f1', '<u4'), ('f2', '<i4')])
-
- Using array-protocol type strings:
-
- >>> np.dtype([('a','f8'),('b','S10')])
- dtype([('a', '<f8'), ('b', '|S10')])
-
- Using comma-separated field formats. The shape is (2,3):
-
- >>> np.dtype("i4, (2,3)f8")
- dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
-
- Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
- is a flexible type, here of size 10:
-
- >>> np.dtype([('hello',(int,3)),('world',np.void,10)])
- dtype([('hello', '<i4', 3), ('world', '|V10')])
-
- Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
- the offsets in bytes:
-
- >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
- dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
-
- Using dictionaries. Two fields named 'gender' and 'age':
-
- >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
- dtype([('gender', '|S1'), ('age', '|u1')])
-
- Offsets in bytes, here 0 and 25:
-
- >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
- dtype([('surname', '|S25'), ('age', '|u1')])
-
- """)
-
-##############################################################################
-#
-# dtype attributes
-#
-##############################################################################
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('alignment',
- """
- The required alignment (bytes) of this data-type according to the compiler.
-
- More information is available in the C-API section of the manual.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder',
- """
- A character indicating the byte-order of this data-type object.
-
- One of:
-
- === ==============
- '=' native
- '<' little-endian
- '>' big-endian
- '|' not applicable
- === ==============
-
- All built-in data-type objects have byteorder either '=' or '|'.
-
- Examples
- --------
-
- >>> dt = np.dtype('i2')
- >>> dt.byteorder
- '='
- >>> # endian is not relevant for 8 bit numbers
- >>> np.dtype('i1').byteorder
- '|'
- >>> # or ASCII strings
- >>> np.dtype('S2').byteorder
- '|'
- >>> # Even if specific code is given, and it is native
- >>> # '=' is the byteorder
- >>> import sys
- >>> sys_is_le = sys.byteorder == 'little'
- >>> native_code = sys_is_le and '<' or '>'
- >>> swapped_code = sys_is_le and '>' or '<'
- >>> dt = np.dtype(native_code + 'i2')
- >>> dt.byteorder
- '='
- >>> # Swapped code shows up as itself
- >>> dt = np.dtype(swapped_code + 'i2')
- >>> dt.byteorder == swapped_code
- True
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('char',
- """A unique character code for each of the 21 different built-in types."""))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('descr',
- """
- PEP3118 interface description of the data-type.
-
- The format is that required by the 'descr' key in the
- PEP3118 `__array_interface__` attribute.
-
- Warning: This attribute exists specifically for PEP3118 compliance, and
- is not a datatype description compatible with `np.dtype`.
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('fields',
- """
- Dictionary of named fields defined for this data type, or ``None``.
-
- The dictionary is indexed by keys that are the names of the fields.
- Each entry in the dictionary is a tuple fully describing the field::
-
- (dtype, offset[, title])
-
- If present, the optional title can be any object (if it is a string
- or unicode then it will also be a key in the fields dictionary,
- otherwise it's meta-data). Notice also that the first two elements
- of the tuple can be passed directly as arguments to the ``ndarray.getfield``
- and ``ndarray.setfield`` methods.
-
- See Also
- --------
- ndarray.getfield, ndarray.setfield
-
- Examples
- --------
- >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
- >>> print(dt.fields)
- {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('flags',
- """
- Bit-flags describing how this data type is to be interpreted.
-
- Bit-masks are in `numpy.core.multiarray` as the constants
- `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`,
- `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation
- of these flags is in C-API documentation; they are largely useful
- for user-defined data-types.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject',
- """
- Boolean indicating whether this dtype contains any reference-counted
- objects in any fields or sub-dtypes.
-
- Recall that what is actually in the ndarray memory representing
- the Python object is the memory address of that object (a pointer).
- Special handling may be required, and this attribute is useful for
- distinguishing data types that may contain arbitrary Python objects
- and data-types that won't.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin',
- """
- Integer indicating how this dtype relates to the built-in dtypes.
-
- Read-only.
-
- = ========================================================================
- 0 if this is a structured array type, with fields
- 1 if this is a dtype compiled into numpy (such as ints, floats etc)
- 2 if the dtype is for a user-defined numpy type
- A user-defined type uses the numpy C-API machinery to extend
- numpy to handle a new array type. See
- :ref:`user.user-defined-data-types` in the NumPy manual.
- = ========================================================================
-
- Examples
- --------
- >>> dt = np.dtype('i2')
- >>> dt.isbuiltin
- 1
- >>> dt = np.dtype('f8')
- >>> dt.isbuiltin
- 1
- >>> dt = np.dtype([('field1', 'f8')])
- >>> dt.isbuiltin
- 0
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('isnative',
- """
- Boolean indicating whether the byte order of this dtype is native
- to the platform.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct',
- """
- Boolean indicating whether the dtype is a struct which maintains
- field alignment. This flag is sticky, so when combining multiple
- structs together, it is preserved and produces new dtypes which
- are also aligned.
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize',
- """
- The element size of this data-type object.
-
- For 18 of the 21 types this number is fixed by the data-type.
- For the flexible data-types, this number can be anything.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('kind',
- """
- A character code (one of 'biufcmMOSUV') identifying the general kind of data.
-
- = ======================
- b boolean
- i signed integer
- u unsigned integer
- f floating-point
- c complex floating-point
- m timedelta
- M datetime
- O object
- S (byte-)string
- U Unicode
- V void
- = ======================
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('name',
- """
- A bit-width name for this data-type.
-
- Un-sized flexible data-type objects do not have this attribute.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('names',
- """
- Ordered list of field names, or ``None`` if there are no fields.
-
- The names are ordered according to increasing byte offset. This can be
- used, for example, to walk through all of the named fields in offset order.
-
- Examples
- --------
- >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
- >>> dt.names
- ('name', 'grades')
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('num',
- """
- A unique number for each of the 21 different built-in types.
-
- These are roughly ordered from least-to-most precision.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('shape',
- """
- Shape tuple of the sub-array if this data type describes a sub-array,
- and ``()`` otherwise.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('ndim',
- """
- Number of dimensions of the sub-array if this data type describes a
- sub-array, and ``0`` otherwise.
-
- .. versionadded:: 1.13.0
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('str',
- """The array-protocol typestring of this data-type object."""))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype',
- """
- Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and
- None otherwise.
-
- The *shape* is the fixed shape of the sub-array described by this
- data type, and *item_dtype* the data type of the array.
-
- If a field whose dtype object has this attribute is retrieved,
- then the extra dimensions implied by *shape* are tacked on to
- the end of the retrieved array.
-
- """))
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('type',
- """The type object used to instantiate a scalar of this data-type."""))
-
-##############################################################################
-#
-# dtype methods
-#
-##############################################################################
-
-add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder',
- """
- newbyteorder(new_order='S')
-
- Return a new dtype with a different byte order.
-
- Changes are also made in all fields and sub-arrays of the data type.
-
- Parameters
- ----------
- new_order : string, optional
- Byte order to force; a value from the byte order specifications
- below. The default value ('S') results in swapping the current
- byte order. `new_order` codes can be any of:
-
- * 'S' - swap dtype from current to opposite endian
- * {'<', 'L'} - little endian
- * {'>', 'B'} - big endian
- * {'=', 'N'} - native order
- * {'|', 'I'} - ignore (no change to byte order)
-
- The code does a case-insensitive check on the first letter of
- `new_order` for these alternatives. For example, any of '>'
- or 'B' or 'b' or 'brian' are valid to specify big-endian.
-
- Returns
- -------
- new_dtype : dtype
- New dtype object with the given change to the byte order.
-
- Notes
- -----
- Changes are also made in all fields and sub-arrays of the data type.
-
- Examples
- --------
- >>> import sys
- >>> sys_is_le = sys.byteorder == 'little'
- >>> native_code = sys_is_le and '<' or '>'
- >>> swapped_code = sys_is_le and '>' or '<'
- >>> native_dt = np.dtype(native_code+'i2')
- >>> swapped_dt = np.dtype(swapped_code+'i2')
- >>> native_dt.newbyteorder('S') == swapped_dt
- True
- >>> native_dt.newbyteorder() == swapped_dt
- True
- >>> native_dt == swapped_dt.newbyteorder('S')
- True
- >>> native_dt == swapped_dt.newbyteorder('=')
- True
- >>> native_dt == swapped_dt.newbyteorder('N')
- True
- >>> native_dt == native_dt.newbyteorder('|')
- True
- >>> np.dtype('<i2') == native_dt.newbyteorder('<')
- True
- >>> np.dtype('<i2') == native_dt.newbyteorder('L')
- True
- >>> np.dtype('>i2') == native_dt.newbyteorder('>')
- True
- >>> np.dtype('>i2') == native_dt.newbyteorder('B')
- True
-
- """))
-
-
-##############################################################################
-#
-# Datetime-related Methods
-#
-##############################################################################
-
-add_newdoc('numpy.core.multiarray', 'busdaycalendar',
- """
- busdaycalendar(weekmask='1111100', holidays=None)
-
- A business day calendar object that efficiently stores information
- defining valid days for the busday family of functions.
-
- The default valid days are Monday through Friday ("business days").
- A busdaycalendar object can be specified with any set of weekly
- valid days, plus an optional "holiday" dates that always will be invalid.
-
- Once a busdaycalendar object is created, the weekmask and holidays
- cannot be modified.
-
- .. versionadded:: 1.7.0
-
- Parameters
- ----------
- weekmask : str or array_like of bool, optional
- A seven-element array indicating which of Monday through Sunday are
- valid days. May be specified as a length-seven list or array, like
- [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
- like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
- weekdays, optionally separated by white space. Valid abbreviations
- are: Mon Tue Wed Thu Fri Sat Sun
- holidays : array_like of datetime64[D], optional
- An array of dates to consider as invalid dates, no matter which
- weekday they fall upon. Holiday dates may be specified in any
- order, and NaT (not-a-time) dates are ignored. This list is
- saved in a normalized form that is suited for fast calculations
- of valid days.
-
- Returns
- -------
- out : busdaycalendar
- A business day calendar object containing the specified
- weekmask and holidays values.
-
- See Also
- --------
- is_busday : Returns a boolean array indicating valid days.
- busday_offset : Applies an offset counted in valid days.
- busday_count : Counts how many valid days are in a half-open date range.
-
- Attributes
- ----------
- Note: once a busdaycalendar object is created, you cannot modify the
- weekmask or holidays. The attributes return copies of internal data.
- weekmask : (copy) seven-element array of bool
- holidays : (copy) sorted array of datetime64[D]
-
- Examples
- --------
- >>> # Some important days in July
- ... bdd = np.busdaycalendar(
- ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
- >>> # Default is Monday to Friday weekdays
- ... bdd.weekmask
- array([ True, True, True, True, True, False, False], dtype='bool')
- >>> # Any holidays already on the weekend are removed
- ... bdd.holidays
- array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')
- """)
-
-add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask',
- """A copy of the seven-element boolean mask indicating valid days."""))
-
-add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays',
- """A copy of the holiday array indicating additional invalid days."""))
-
-add_newdoc('numpy.core.multiarray', 'is_busday',
- """
- is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)
-
- Calculates which of the given dates are valid days, and which are not.
-
- .. versionadded:: 1.7.0
-
- Parameters
- ----------
- dates : array_like of datetime64[D]
- The array of dates to process.
- weekmask : str or array_like of bool, optional
- A seven-element array indicating which of Monday through Sunday are
- valid days. May be specified as a length-seven list or array, like
- [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
- like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
- weekdays, optionally separated by white space. Valid abbreviations
- are: Mon Tue Wed Thu Fri Sat Sun
- holidays : array_like of datetime64[D], optional
- An array of dates to consider as invalid dates. They may be
- specified in any order, and NaT (not-a-time) dates are ignored.
- This list is saved in a normalized form that is suited for
- fast calculations of valid days.
- busdaycal : busdaycalendar, optional
- A `busdaycalendar` object which specifies the valid days. If this
- parameter is provided, neither weekmask nor holidays may be
- provided.
- out : array of bool, optional
- If provided, this array is filled with the result.
-
- Returns
- -------
- out : array of bool
- An array with the same shape as ``dates``, containing True for
- each valid day, and False for each invalid day.
-
- See Also
- --------
- busdaycalendar: An object that specifies a custom set of valid days.
- busday_offset : Applies an offset counted in valid days.
- busday_count : Counts how many valid days are in a half-open date range.
-
- Examples
- --------
- >>> # The weekdays are Friday, Saturday, and Monday
- ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
- ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
- array([False, False, True], dtype='bool')
- """)
-
-add_newdoc('numpy.core.multiarray', 'busday_offset',
- """
- busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)
-
- First adjusts the date to fall on a valid day according to
- the ``roll`` rule, then applies offsets to the given dates
- counted in valid days.
-
- .. versionadded:: 1.7.0
-
- Parameters
- ----------
- dates : array_like of datetime64[D]
- The array of dates to process.
- offsets : array_like of int
- The array of offsets, which is broadcast with ``dates``.
- roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional
- How to treat dates that do not fall on a valid day. The default
- is 'raise'.
-
- * 'raise' means to raise an exception for an invalid day.
- * 'nat' means to return a NaT (not-a-time) for an invalid day.
- * 'forward' and 'following' mean to take the first valid day
- later in time.
- * 'backward' and 'preceding' mean to take the first valid day
- earlier in time.
- * 'modifiedfollowing' means to take the first valid day
- later in time unless it is across a Month boundary, in which
- case to take the first valid day earlier in time.
- * 'modifiedpreceding' means to take the first valid day
- earlier in time unless it is across a Month boundary, in which
- case to take the first valid day later in time.
- weekmask : str or array_like of bool, optional
- A seven-element array indicating which of Monday through Sunday are
- valid days. May be specified as a length-seven list or array, like
- [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
- like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
- weekdays, optionally separated by white space. Valid abbreviations
- are: Mon Tue Wed Thu Fri Sat Sun
- holidays : array_like of datetime64[D], optional
- An array of dates to consider as invalid dates. They may be
- specified in any order, and NaT (not-a-time) dates are ignored.
- This list is saved in a normalized form that is suited for
- fast calculations of valid days.
- busdaycal : busdaycalendar, optional
- A `busdaycalendar` object which specifies the valid days. If this
- parameter is provided, neither weekmask nor holidays may be
- provided.
- out : array of datetime64[D], optional
- If provided, this array is filled with the result.
-
- Returns
- -------
- out : array of datetime64[D]
- An array with a shape from broadcasting ``dates`` and ``offsets``
- together, containing the dates with offsets applied.
-
- See Also
- --------
- busdaycalendar: An object that specifies a custom set of valid days.
- is_busday : Returns a boolean array indicating valid days.
- busday_count : Counts how many valid days are in a half-open date range.
-
- Examples
- --------
- >>> # First business day in October 2011 (not accounting for holidays)
- ... np.busday_offset('2011-10', 0, roll='forward')
- numpy.datetime64('2011-10-03','D')
- >>> # Last business day in February 2012 (not accounting for holidays)
- ... np.busday_offset('2012-03', -1, roll='forward')
- numpy.datetime64('2012-02-29','D')
- >>> # Third Wednesday in January 2011
- ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
- numpy.datetime64('2011-01-19','D')
- >>> # 2012 Mother's Day in Canada and the U.S.
- ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
- numpy.datetime64('2012-05-13','D')
-
- >>> # First business day on or after a date
- ... np.busday_offset('2011-03-20', 0, roll='forward')
- numpy.datetime64('2011-03-21','D')
- >>> np.busday_offset('2011-03-22', 0, roll='forward')
- numpy.datetime64('2011-03-22','D')
- >>> # First business day after a date
- ... np.busday_offset('2011-03-20', 1, roll='backward')
- numpy.datetime64('2011-03-21','D')
- >>> np.busday_offset('2011-03-22', 1, roll='backward')
- numpy.datetime64('2011-03-23','D')
- """)
-
-add_newdoc('numpy.core.multiarray', 'busday_count',
- """
- busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)
-
- Counts the number of valid days between `begindates` and
- `enddates`, not including the day of `enddates`.
-
- If ``enddates`` specifies a date value that is earlier than the
- corresponding ``begindates`` date value, the count will be negative.
-
- .. versionadded:: 1.7.0
-
- Parameters
- ----------
- begindates : array_like of datetime64[D]
- The array of the first dates for counting.
- enddates : array_like of datetime64[D]
- The array of the end dates for counting, which are excluded
- from the count themselves.
- weekmask : str or array_like of bool, optional
- A seven-element array indicating which of Monday through Sunday are
- valid days. May be specified as a length-seven list or array, like
- [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
- like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
- weekdays, optionally separated by white space. Valid abbreviations
- are: Mon Tue Wed Thu Fri Sat Sun
- holidays : array_like of datetime64[D], optional
- An array of dates to consider as invalid dates. They may be
- specified in any order, and NaT (not-a-time) dates are ignored.
- This list is saved in a normalized form that is suited for
- fast calculations of valid days.
- busdaycal : busdaycalendar, optional
- A `busdaycalendar` object which specifies the valid days. If this
- parameter is provided, neither weekmask nor holidays may be
- provided.
- out : array of int, optional
- If provided, this array is filled with the result.
-
- Returns
- -------
- out : array of int
- An array with a shape from broadcasting ``begindates`` and ``enddates``
- together, containing the number of valid days between
- the begin and end dates.
-
- See Also
- --------
- busdaycalendar: An object that specifies a custom set of valid days.
- is_busday : Returns a boolean array indicating valid days.
- busday_offset : Applies an offset counted in valid days.
-
- Examples
- --------
- >>> # Number of weekdays in January 2011
- ... np.busday_count('2011-01', '2011-02')
- 21
- >>> # Number of weekdays in 2011
- ... np.busday_count('2011', '2012')
- 260
- >>> # Number of Saturdays in 2011
- ... np.busday_count('2011', '2012', weekmask='Sat')
- 53
- """)
-
-add_newdoc('numpy.core.multiarray', 'normalize_axis_index',
- """
- normalize_axis_index(axis, ndim, msg_prefix=None)
-
- Normalizes an axis index, `axis`, such that is a valid positive index into
- the shape of array with `ndim` dimensions. Raises an AxisError with an
- appropriate message if this is not possible.
-
- Used internally by all axis-checking logic.
-
- .. versionadded:: 1.13.0
-
- Parameters
- ----------
- axis : int
- The un-normalized index of the axis. Can be negative
- ndim : int
- The number of dimensions of the array that `axis` should be normalized
- against
- msg_prefix : str
- A prefix to put before the message, typically the name of the argument
-
- Returns
- -------
- normalized_axis : int
- The normalized axis index, such that `0 <= normalized_axis < ndim`
-
- Raises
- ------
- AxisError
- If the axis index is invalid, when `-ndim <= axis < ndim` is false.
-
- Examples
- --------
- >>> normalize_axis_index(0, ndim=3)
- 0
- >>> normalize_axis_index(1, ndim=3)
- 1
- >>> normalize_axis_index(-1, ndim=3)
- 2
-
- >>> normalize_axis_index(3, ndim=3)
- Traceback (most recent call last):
- ...
- AxisError: axis 3 is out of bounds for array of dimension 3
- >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg')
- Traceback (most recent call last):
- ...
- AxisError: axes_arg: axis -4 is out of bounds for array of dimension 3
- """)
-
-add_newdoc('numpy.core.multiarray', 'datetime_as_string',
- """
- datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
-
- Convert an array of datetimes into an array of strings.
-
- Parameters
- ----------
- arr : array_like of datetime64
- The array of UTC timestamps to format.
- unit : str
- One of None, 'auto', or a :ref:`datetime unit <arrays.dtypes.dateunits>`.
- timezone : {'naive', 'UTC', 'local'} or tzinfo
- Timezone information to use when displaying the datetime. If 'UTC', end
- with a Z to indicate UTC time. If 'local', convert to the local timezone
- first, and suffix with a +-#### timezone offset. If a tzinfo object,
- then do as with 'local', but use the specified timezone.
- casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}
- Casting to allow when changing between datetime units.
-
- Returns
- -------
- str_arr : ndarray
- An array of strings the same shape as `arr`.
-
- Examples
- --------
- >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
- >>> d
- array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
- '2002-10-27T07:30'], dtype='datetime64[m]')
-
- Setting the timezone to UTC shows the same information, but with a Z suffix
-
- >>> np.datetime_as_string(d, timezone='UTC')
- array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',
- '2002-10-27T07:30Z'], dtype='<U35')
-
- Note that we picked datetimes that cross a DST boundary. Passing in a
- ``pytz`` timezone object will print the appropriate offset
-
- >>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
- array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',
- '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')
-
- Passing in a unit will change the precision
-
- >>> np.datetime_as_string(d, unit='h')
- array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],
- dtype='<U32')
- >>> np.datetime_as_string(d, unit='s')
- array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',
- '2002-10-27T07:30:00'], dtype='<U38')
-
- 'casting' can be used to specify whether precision can be changed
-
- >>> np.datetime_as_string(d, unit='h', casting='safe')
- TypeError: Cannot create a datetime string as units 'h' from a NumPy
- datetime with units 'm' according to the rule 'safe'
- """)
-
-add_newdoc('numpy.core.multiarray', 'datetime_data',
- """
- datetime_data(dtype, /)
-
- Get information about the step size of a date or time type.
-
- The returned tuple can be passed as the second argument of `numpy.datetime64` and
- `numpy.timedelta64`.
-
- Parameters
- ----------
- dtype : dtype
- The dtype object, which must be a `datetime64` or `timedelta64` type.
-
- Returns
- -------
- unit : str
- The :ref:`datetime unit <arrays.dtypes.dateunits>` on which this dtype
- is based.
- count : int
- The number of base units in a step.
-
- Examples
- --------
- >>> dt_25s = np.dtype('timedelta64[25s]')
- >>> np.datetime_data(dt_25s)
- ('s', 25)
- >>> np.array(10, dt_25s).astype('timedelta64[s]')
- array(250, dtype='timedelta64[s]')
-
- The result can be used to construct a datetime that uses the same units
- as a timedelta::
-
- >>> np.datetime64('2010', np.datetime_data(dt_25s))
- numpy.datetime64('2010-01-01T00:00:00','25s')
- """)
-
-
-##############################################################################
-#
-# Documentation for `generic` attributes and methods
-#
-##############################################################################
-
-add_newdoc('numpy.core.numerictypes', 'generic',
- """
- Base class for numpy scalar types.
-
- Class from which most (all?) numpy scalar types are derived. For
- consistency, exposes the same API as `ndarray`, despite many
- consequent attributes being either "get-only," or completely irrelevant.
- This is the class from which it is strongly suggested users should derive
- custom scalar types.
-
- """)
-
-# Attributes
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('T',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class so as to
- provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('base',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class so as to
- a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('data',
- """Pointer to start of data."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('dtype',
- """Get array data-descriptor."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('flags',
- """The integer value of flags."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('flat',
- """A 1-D view of the scalar."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('imag',
- """The imaginary part of the scalar."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize',
- """The length of one element in bytes."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes',
- """The length of the scalar in bytes."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('ndim',
- """The number of array dimensions."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('real',
- """The real part of the scalar."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('shape',
- """Tuple of array dimensions."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('size',
- """The number of elements in the gentype."""))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('strides',
- """Tuple of bytes steps in each dimension."""))
-
-# Methods
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('all',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('any',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('argmax',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('argmin',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('argsort',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('astype',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('byteswap',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class so as to
- provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('choose',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('clip',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('compress',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('conjugate',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('copy',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('cumprod',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('cumsum',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('diagonal',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('dump',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('dumps',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('fill',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('flatten',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('getfield',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('item',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('itemset',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('max',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('mean',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('min',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder',
- """
- newbyteorder(new_order='S')
-
- Return a new `dtype` with a different byte order.
-
- Changes are also made in all fields and sub-arrays of the data type.
-
- The `new_order` code can be any from the following:
-
- * 'S' - swap dtype from current to opposite endian
- * {'<', 'L'} - little endian
- * {'>', 'B'} - big endian
- * {'=', 'N'} - native order
- * {'|', 'I'} - ignore (no change to byte order)
-
- Parameters
- ----------
- new_order : str, optional
- Byte order to force; a value from the byte order specifications
- above. The default value ('S') results in swapping the current
- byte order. The code does a case-insensitive check on the first
- letter of `new_order` for the alternatives above. For example,
- any of 'B' or 'b' or 'biggish' are valid to specify big-endian.
-
-
- Returns
- -------
- new_dtype : dtype
- New `dtype` object with the given change to the byte order.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('nonzero',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('prod',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('ptp',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('put',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('ravel',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('repeat',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('reshape',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('resize',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('round',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('searchsorted',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('setfield',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('setflags',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class so as to
- provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('sort',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('squeeze',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('std',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('sum',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('swapaxes',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('take',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('tofile',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('tolist',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('tostring',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('trace',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('transpose',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('var',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-add_newdoc('numpy.core.numerictypes', 'generic', ('view',
- """
- Not implemented (virtual attribute)
-
- Class generic exists solely to derive numpy scalars from, and possesses,
- albeit unimplemented, all the attributes of the ndarray class
- so as to provide a uniform API.
-
- See Also
- --------
- The corresponding attribute of the derived class of interest.
-
- """))
-
-
-##############################################################################
-#
-# Documentation for other scalar classes
-#
-##############################################################################
-
-add_newdoc('numpy.core.numerictypes', 'bool_',
- """NumPy's Boolean type. Character code: ``?``. Alias: bool8""")
-
-add_newdoc('numpy.core.numerictypes', 'complex64',
- """
- Complex number type composed of two 32 bit floats. Character code: 'F'.
-
- """)
-
-add_newdoc('numpy.core.numerictypes', 'complex128',
- """
- Complex number type composed of two 64 bit floats. Character code: 'D'.
- Python complex compatible.
-
- """)
-
-add_newdoc('numpy.core.numerictypes', 'complex256',
- """
- Complex number type composed of two 128-bit floats. Character code: 'G'.
-
- """)
-
-add_newdoc('numpy.core.numerictypes', 'float32',
- """
- 32-bit floating-point number. Character code 'f'. C float compatible.
-
- """)
-
-add_newdoc('numpy.core.numerictypes', 'float64',
- """
- 64-bit floating-point number. Character code 'd'. Python float compatible.
-
- """)
-
-add_newdoc('numpy.core.numerictypes', 'float96',
- """
- """)
-
-add_newdoc('numpy.core.numerictypes', 'float128',
- """
- 128-bit floating-point number. Character code: 'g'. C long float
- compatible.
-
- """)
-
-add_newdoc('numpy.core.numerictypes', 'int8',
- """8-bit integer. Character code ``b``. C char compatible.""")
-
-add_newdoc('numpy.core.numerictypes', 'int16',
- """16-bit integer. Character code ``h``. C short compatible.""")
-
-add_newdoc('numpy.core.numerictypes', 'int32',
- """32-bit integer. Character code 'i'. C int compatible.""")
-
-add_newdoc('numpy.core.numerictypes', 'int64',
- """64-bit integer. Character code 'l'. Python int compatible.""")
-
-add_newdoc('numpy.core.numerictypes', 'object_',
- """Any Python object. Character code: 'O'.""")