summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
authorrgommers <ralf.gommers@googlemail.com>2011-03-07 12:25:37 +0800
committerrgommers <ralf.gommers@googlemail.com>2011-03-07 12:25:37 +0800
commit51b5c585890967283aa6ddcdbb9ff624f0ee4866 (patch)
treee81b008e45b0da7813c2b2fabfdc2356c6e3306e /numpy/add_newdocs.py
parent898e6bdc625cdd3c97865ef99f8d51c5f43eafff (diff)
downloadnumpy-51b5c585890967283aa6ddcdbb9ff624f0ee4866.tar.gz
DOC: add a few more wiki edits, and move umath docs to correct place.
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py247
1 files changed, 0 insertions, 247 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index 187180c5a..1cbf27c7d 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -4048,253 +4048,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
##############################################################################
#
-# umath functions
-#
-##############################################################################
-
-add_newdoc('numpy.core.umath', 'frexp',
- """
- Return normalized fraction and exponent of 2 of input array, element-wise.
-
- Returns (`out1`, `out2`) from equation ``x` = out1 * 2**out2``.
-
- Parameters
- ----------
- x : array_like
- Input array.
-
- Returns
- -------
- (out1, out2) : tuple of ndarrays, (float, int)
- `out1` is a float array with values between -1 and 1.
- `out2` is an int array which represent the exponent of 2.
-
- See Also
- --------
- ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`.
-
- Notes
- -----
- Complex dtypes are not supported, they will raise a TypeError.
-
- Examples
- --------
- >>> x = np.arange(9)
- >>> y1, y2 = np.frexp(x)
- >>> y1
- array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,
- 0.5 ])
- >>> y2
- array([0, 1, 2, 2, 3, 3, 3, 3, 4])
- >>> y1 * 2**y2
- array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.])
-
- """)
-
-add_newdoc('numpy.core.umath', 'frompyfunc',
- """
- frompyfunc(func, nin, nout)
-
- Takes an arbitrary Python function and returns a Numpy ufunc.
-
- Can be used, for example, to add broadcasting to a built-in Python
- function (see Examples section).
-
- Parameters
- ----------
- func : Python function object
- An arbitrary Python function.
- nin : int
- The number of input arguments.
- nout : int
- The number of objects returned by `func`.
-
- Returns
- -------
- out : ufunc
- Returns a Numpy universal function (``ufunc``) object.
-
- Notes
- -----
- The returned ufunc always returns PyObject arrays.
-
- Examples
- --------
- Use frompyfunc to add broadcasting to the Python function ``oct``:
-
- >>> oct_array = np.frompyfunc(oct, 1, 1)
- >>> oct_array(np.array((10, 30, 100)))
- array([012, 036, 0144], dtype=object)
- >>> np.array((oct(10), oct(30), oct(100))) # for comparison
- array(['012', '036', '0144'],
- dtype='|S4')
-
- """)
-
-add_newdoc('numpy.core.umath', 'ldexp',
- """
- Compute y = x1 * 2**x2.
-
- Parameters
- ----------
- x1 : array_like
- The array of multipliers.
- x2 : array_like
- The array of exponents.
-
- Returns
- -------
- y : array_like
- The output array, the result of ``x1 * 2**x2``.
-
- See Also
- --------
- frexp : Return (y1, y2) from ``x = y1 * 2**y2``, the inverse of `ldexp`.
-
- Notes
- -----
- Complex dtypes are not supported, they will raise a TypeError.
-
- `ldexp` is useful as the inverse of `frexp`, if used by itself it is
- more clear to simply use the expression ``x1 * 2**x2``.
-
- Examples
- --------
- >>> np.ldexp(5, np.arange(4))
- array([ 5., 10., 20., 40.], dtype=float32)
-
- >>> x = np.arange(6)
- >>> np.ldexp(*np.frexp(x))
- array([ 0., 1., 2., 3., 4., 5.])
-
- """)
-
-add_newdoc('numpy.core.umath', 'geterrobj',
- """
- geterrobj()
-
- Return the current object that defines floating-point error handling.
-
- The error object contains all information that defines the error handling
- behavior in Numpy. `geterrobj` is used internally by the other
- functions that get and set error handling behavior (`geterr`, `seterr`,
- `geterrcall`, `seterrcall`).
-
- Returns
- -------
- errobj : list
- The error object, a list containing three elements:
- [internal numpy buffer size, error mask, error callback function].
-
- The error mask is a single integer that holds the treatment information
- on all four floating point errors. The information for each error type
- is contained in three bits of the integer. If we print it in base 8, we
- can see what treatment is set for "invalid", "under", "over", and
- "divide" (in that order). The printed string can be interpreted with
-
- * 0 : 'ignore'
- * 1 : 'warn'
- * 2 : 'raise'
- * 3 : 'call'
- * 4 : 'print'
- * 5 : 'log'
-
- See Also
- --------
- seterrobj, seterr, geterr, seterrcall, geterrcall
- getbufsize, setbufsize
-
- Notes
- -----
- For complete documentation of the types of floating-point exceptions and
- treatment options, see `seterr`.
-
- Examples
- --------
- >>> np.geterrobj() # first get the defaults
- [10000, 0, None]
-
- >>> def err_handler(type, flag):
- ... print "Floating point error (%s), with flag %s" % (type, flag)
- ...
- >>> old_bufsize = np.setbufsize(20000)
- >>> old_err = np.seterr(divide='raise')
- >>> old_handler = np.seterrcall(err_handler)
- >>> np.geterrobj()
- [20000, 2, <function err_handler at 0x91dcaac>]
-
- >>> old_err = np.seterr(all='ignore')
- >>> np.base_repr(np.geterrobj()[1], 8)
- '0'
- >>> old_err = np.seterr(divide='warn', over='log', under='call',
- invalid='print')
- >>> np.base_repr(np.geterrobj()[1], 8)
- '4351'
-
- """)
-
-add_newdoc('numpy.core.umath', 'seterrobj',
- """
- seterrobj(errobj)
-
- Set the object that defines floating-point error handling.
-
- The error object contains all information that defines the error handling
- behavior in Numpy. `seterrobj` is used internally by the other
- functions that set error handling behavior (`seterr`, `seterrcall`).
-
- Parameters
- ----------
- errobj : list
- The error object, a list containing three elements:
- [internal numpy buffer size, error mask, error callback function].
-
- The error mask is a single integer that holds the treatment information
- on all four floating point errors. The information for each error type
- is contained in three bits of the integer. If we print it in base 8, we
- can see what treatment is set for "invalid", "under", "over", and
- "divide" (in that order). The printed string can be interpreted with
-
- * 0 : 'ignore'
- * 1 : 'warn'
- * 2 : 'raise'
- * 3 : 'call'
- * 4 : 'print'
- * 5 : 'log'
-
- See Also
- --------
- geterrobj, seterr, geterr, seterrcall, geterrcall
- getbufsize, setbufsize
-
- Notes
- -----
- For complete documentation of the types of floating-point exceptions and
- treatment options, see `seterr`.
-
- Examples
- --------
- >>> old_errobj = np.geterrobj() # first get the defaults
- >>> old_errobj
- [10000, 0, None]
-
- >>> def err_handler(type, flag):
- ... print "Floating point error (%s), with flag %s" % (type, flag)
- ...
- >>> new_errobj = [20000, 12, err_handler]
- >>> np.seterrobj(new_errobj)
- >>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
- '14'
- >>> np.geterr()
- {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
- >>> np.geterrcall() is err_handler
- True
-
- """)
-
-
-##############################################################################
-#
# lib._compiled_base functions
#
##############################################################################