diff options
author | rgommers <ralf.gommers@googlemail.com> | 2011-03-02 12:55:04 +0800 |
---|---|---|
committer | rgommers <ralf.gommers@googlemail.com> | 2011-03-02 13:23:49 +0800 |
commit | 68e33f93d49d39cfd3789d85224a65036f03ee11 (patch) | |
tree | 67f413c015e877fe2fcbe13d7df451c28cc481fc /numpy/add_newdocs.py | |
parent | 4ca2465fe169576b46dee783dd0279cfd536d9c4 (diff) | |
download | numpy-68e33f93d49d39cfd3789d85224a65036f03ee11.tar.gz |
DOC: merge wiki edits for numpy.core.
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 110 |
1 files changed, 71 insertions, 39 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index 62e656346..c631fe3d0 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -284,6 +284,36 @@ add_newdoc('numpy.core', 'broadcast', ('size', """)) +add_newdoc('numpy.core', 'broadcast', ('reset', + """ + reset() + + Reset the broadcasted result's iterator(s). + + Parameters + ---------- + None + + Returns + ------- + None + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]] + >>> b = np.broadcast(x, y) + >>> b.index + 0 + >>> b.next(), b.next(), b.next() + ((1, 4), (2, 4), (3, 4)) + >>> b.index + 3 + >>> b.reset() + >>> b.index + 0 + + """)) ############################################################################### # @@ -330,6 +360,15 @@ add_newdoc('numpy.core.multiarray', 'array', array should have. Ones will be pre-pended to the shape as needed to meet this requirement. + Returns + ------- + out : ndarray + An array object satisfying the specified requirements. + + See Also + -------- + empty, empty_like, zeros, zeros_like, ones, ones_like, fill + Examples -------- >>> np.array([1, 2, 3]) @@ -574,28 +613,29 @@ add_newdoc('numpy.core.multiarray', 'fromstring', """ fromstring(string, dtype=float, count=-1, sep='') - Return a new 1-D array initialized from raw binary or text data in string. + A new 1-D array initialized from raw binary or text data in a string. Parameters ---------- string : str A string containing the data. - dtype : dtype, optional - The data type of the array. For binary input data, the data must be - in exactly this format. + dtype : data-type, optional + The data type of the array; default: float. For binary input data, + the data must be in exactly this format. count : int, optional - Read this number of `dtype` elements from the data. If this is - negative, then the size will be determined from the length of the - data. + Read this number of `dtype` elements from the data. If this is + negative (the default), the count will be determined from the + length of the data. sep : str, optional - If provided and not empty, then the data will be interpreted as - ASCII text with decimal numbers. This argument is interpreted as the - string separating numbers in the data. Extra whitespace between - elements is also ignored. + If not provided or, equivalently, the empty string, the data will + be interpreted as binary data; otherwise, as ASCII text with + decimal numbers. Also in this latter case, this argument is + interpreted as the string separating numbers in the data; extra + whitespace between elements is also ignored. Returns ------- - arr : array + arr : ndarray The constructed array. Raises @@ -604,6 +644,10 @@ add_newdoc('numpy.core.multiarray', 'fromstring', If the string is not the correct size to satisfy the requested `dtype` and `count`. + See Also + -------- + frombuffer, fromfile, fromiter + Examples -------- >>> np.fromstring('\\x01\\x02', dtype=np.uint8) @@ -615,17 +659,6 @@ add_newdoc('numpy.core.multiarray', 'fromstring', >>> np.fromstring('\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3) array([1, 2, 3], dtype=uint8) - Invalid inputs: - - >>> np.fromstring('\\x01\\x02\\x03\\x04\\x05', dtype=np.int32) - Traceback (most recent call last): - File "<stdin>", line 1, in <module> - ValueError: string size must be a multiple of element size - >>> np.fromstring('\\x01\\x02', dtype=np.uint8, count=3) - Traceback (most recent call last): - File "<stdin>", line 1, in <module> - ValueError: string is smaller than requested size - """) add_newdoc('numpy.core.multiarray', 'fromiter', @@ -639,9 +672,9 @@ add_newdoc('numpy.core.multiarray', 'fromiter', iterable : iterable object An iterable object providing data for the array. dtype : data-type - The data type of the returned array. + The data-type of the returned array. count : int, optional - The number of items to read from iterable. The default is -1, + The number of items to read from *iterable*. The default is -1, which means all data is read. Returns @@ -651,9 +684,8 @@ add_newdoc('numpy.core.multiarray', 'fromiter', Notes ----- - Specify ``count`` to improve performance. It allows - ``fromiter`` to pre-allocate the output array, instead of - resizing it on demand. + Specify `count` to improve performance. It allows ``fromiter`` to + pre-allocate the output array, instead of resizing it on demand. Examples -------- @@ -746,26 +778,26 @@ add_newdoc('numpy.core.multiarray', 'frombuffer', Parameters ---------- - buffer + buffer : buffer_like An object that exposes the buffer interface. dtype : data-type, optional - Data type of the returned array. + Data-type of the returned array; default: float. count : int, optional Number of items to read. ``-1`` means all data in the buffer. offset : int, optional - Start reading the buffer from this offset. + Start reading the buffer from this offset; default: 0. Notes ----- - If the buffer has data that is not in machine byte-order, this - should be specified as part of the data-type, e.g.:: + If the buffer has data that is not in machine byte-order, this should + be specified as part of the data-type, e.g.:: >>> dt = np.dtype(int) >>> dt = dt.newbyteorder('>') >>> np.frombuffer(buf, dtype=dt) - The data of the resulting array will not be byteswapped, - but will be interpreted correctly. + The data of the resulting array will not be byteswapped, but will be + interpreted correctly. Examples -------- @@ -1373,7 +1405,7 @@ add_newdoc('numpy.core.multiarray', 'result_type', like C++, with some slight differences. When both scalars and arrays are used, the array's type takes precedence and the actual value of the scalar is taken into account. - + For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output. If the 3 is a 32-bit integer, the NumPy rules indicate it can't convert losslessly @@ -1536,12 +1568,12 @@ add_newdoc('numpy.core', 'einsum', The best way to understand this function is to try the examples below, which show how many common NumPy functions can be implemented as calls to einsum. - + The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the corresponding operand. Repeated subscripts labels in one operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent to ``np.trace(a)``. - + Whenever a label is repeated, it is summed, so ``np.einsum('i,i', a, b)`` is equivalent to ``np.inner(a,b)``. If a label appears only once, it is not summed, so ``np.einsum('i', a)`` produces a view of ``a`` @@ -1607,7 +1639,7 @@ add_newdoc('numpy.core', 'einsum', -------- dot, inner, outer, tensordot - + Examples -------- |