diff options
author | endolith <endolith@gmail.com> | 2012-09-25 13:41:25 -0400 |
---|---|---|
committer | endolith <endolith@gmail.com> | 2012-09-26 11:13:13 -0400 |
commit | a3e883ac7a3ae5de88455d782752045464fe9f07 (patch) | |
tree | 9554c94629bd26b01b70e1db3aa013fdd2ea7c52 /numpy/add_newdocs.py | |
parent | 4134859a39ac6d8f292b3469c4f399827eaf4578 (diff) | |
download | numpy-a3e883ac7a3ae5de88455d782752045464fe9f07.tar.gz |
DOC: Used regex to find colons missing spaces which render wrong online, also other spacing or formatting mistakes
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 18 |
1 files changed, 7 insertions, 11 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index f94a6964a..129bfd692 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -207,7 +207,7 @@ add_newdoc('numpy.core', 'nditer', op_dtypes : dtype or tuple of dtype(s), optional The required data type(s) of the operands. If copying or buffering is enabled, the data will be converted to/from their original types. - order : {'C', 'F', 'A', or 'K'}, optional + order : {'C', 'F', 'A', 'K'}, optional Controls the iteration order. 'C' means C order, 'F' means Fortran order, 'A' means 'F' order if all the arrays are Fortran contiguous, 'C' order otherwise, and 'K' means as close to the @@ -780,7 +780,7 @@ add_newdoc('numpy.core.multiarray', 'empty_like', returned array. dtype : data-type, optional Overrides the data type of the result. - order : {'C', 'F', 'A', or 'K'}, optional + order : {'C', 'F', 'A', 'K'}, optional Overrides the memory layout of the result. 'C' means C-order, 'F' means F-order, 'A' means 'F' if ``a`` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of ``a`` as closely @@ -1497,7 +1497,7 @@ add_newdoc('numpy.core.multiarray', 'lexsort', Parameters ---------- - keys : (k,N) array or tuple containing k (N,)-shaped sequences + keys : (k, N) array or tuple containing k (N,)-shaped sequences The `k` different "columns" to be sorted. The last column (or row if `keys` is a 2D array) is the primary sort key. axis : int, optional @@ -1592,7 +1592,6 @@ add_newdoc('numpy.core.multiarray', 'can_cast', Examples -------- - Basic examples >>> np.can_cast(np.int32, np.int64) @@ -1972,7 +1971,7 @@ add_newdoc('numpy.core', 'einsum', If provided, forces the calculation to use the data type specified. Note that you may have to also give a more liberal `casting` parameter to allow the conversions. - order : {'C', 'F', 'A', or 'K'}, optional + order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the output. 'C' means it should be C contiguous. 'F' means it should be Fortran contiguous, 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. @@ -3041,7 +3040,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('astype', ---------- dtype : str or dtype Typecode or data-type to which the array is cast. - order : {'C', 'F', 'A', or 'K'}, optional + order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout order of the result. 'C' means C order, 'F' means Fortran order, 'A' means 'F' order if all the arrays are Fortran contiguous, @@ -3104,12 +3103,12 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap', Parameters ---------- - inplace: bool, optional + inplace : bool, optional If ``True``, swap bytes in-place, default is ``False``. Returns ------- - out: ndarray + out : ndarray The byteswapped array. If `inplace` is ``True``, this is a view to self. @@ -5022,7 +5021,6 @@ add_newdoc('numpy.lib._compiled_base', 'add_newdoc_ufunc', Notes ----- - This method allocates memory for new_docstring on the heap. Technically this creates a mempory leak, since this memory will not be reclaimed until the end of the program @@ -5864,7 +5862,6 @@ add_newdoc('numpy.core.multiarray', 'dtype', ('fields', Examples -------- - >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) >>> print dt.fields {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)} @@ -5972,7 +5969,6 @@ add_newdoc('numpy.core.multiarray', 'dtype', ('names', Examples -------- - >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) >>> dt.names ('name', 'grades') |