summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
authorendolith <endolith@gmail.com>2012-09-25 13:41:25 -0400
committerendolith <endolith@gmail.com>2012-09-26 11:13:13 -0400
commita3e883ac7a3ae5de88455d782752045464fe9f07 (patch)
tree9554c94629bd26b01b70e1db3aa013fdd2ea7c52 /numpy/add_newdocs.py
parent4134859a39ac6d8f292b3469c4f399827eaf4578 (diff)
downloadnumpy-a3e883ac7a3ae5de88455d782752045464fe9f07.tar.gz
DOC: Used regex to find colons missing spaces which render wrong online, also other spacing or formatting mistakes
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py18
1 files changed, 7 insertions, 11 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index f94a6964a..129bfd692 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -207,7 +207,7 @@ add_newdoc('numpy.core', 'nditer',
op_dtypes : dtype or tuple of dtype(s), optional
The required data type(s) of the operands. If copying or buffering
is enabled, the data will be converted to/from their original types.
- order : {'C', 'F', 'A', or 'K'}, optional
+ order : {'C', 'F', 'A', 'K'}, optional
Controls the iteration order. 'C' means C order, 'F' means
Fortran order, 'A' means 'F' order if all the arrays are Fortran
contiguous, 'C' order otherwise, and 'K' means as close to the
@@ -780,7 +780,7 @@ add_newdoc('numpy.core.multiarray', 'empty_like',
returned array.
dtype : data-type, optional
Overrides the data type of the result.
- order : {'C', 'F', 'A', or 'K'}, optional
+ order : {'C', 'F', 'A', 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if ``a`` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of ``a`` as closely
@@ -1497,7 +1497,7 @@ add_newdoc('numpy.core.multiarray', 'lexsort',
Parameters
----------
- keys : (k,N) array or tuple containing k (N,)-shaped sequences
+ keys : (k, N) array or tuple containing k (N,)-shaped sequences
The `k` different "columns" to be sorted. The last column (or row if
`keys` is a 2D array) is the primary sort key.
axis : int, optional
@@ -1592,7 +1592,6 @@ add_newdoc('numpy.core.multiarray', 'can_cast',
Examples
--------
-
Basic examples
>>> np.can_cast(np.int32, np.int64)
@@ -1972,7 +1971,7 @@ add_newdoc('numpy.core', 'einsum',
If provided, forces the calculation to use the data type specified.
Note that you may have to also give a more liberal `casting`
parameter to allow the conversions.
- order : {'C', 'F', 'A', or 'K'}, optional
+ order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout of the output. 'C' means it should
be C contiguous. 'F' means it should be Fortran contiguous,
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
@@ -3041,7 +3040,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
- order : {'C', 'F', 'A', or 'K'}, optional
+ order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout order of the result.
'C' means C order, 'F' means Fortran order, 'A'
means 'F' order if all the arrays are Fortran contiguous,
@@ -3104,12 +3103,12 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
Parameters
----------
- inplace: bool, optional
+ inplace : bool, optional
If ``True``, swap bytes in-place, default is ``False``.
Returns
-------
- out: ndarray
+ out : ndarray
The byteswapped array. If `inplace` is ``True``, this is
a view to self.
@@ -5022,7 +5021,6 @@ add_newdoc('numpy.lib._compiled_base', 'add_newdoc_ufunc',
Notes
-----
-
This method allocates memory for new_docstring on
the heap. Technically this creates a mempory leak, since this
memory will not be reclaimed until the end of the program
@@ -5864,7 +5862,6 @@ add_newdoc('numpy.core.multiarray', 'dtype', ('fields',
Examples
--------
-
>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print dt.fields
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}
@@ -5972,7 +5969,6 @@ add_newdoc('numpy.core.multiarray', 'dtype', ('names',
Examples
--------
-
>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')