summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
authorMark Wiebe <mwwiebe@gmail.com>2011-01-28 12:43:22 -0800
committerMark Wiebe <mwwiebe@gmail.com>2011-01-28 12:49:22 -0800
commitc9d1849332ae5bf73299ea1268f6a55f78624688 (patch)
treeddb87dd09443045b1a2a5182f17dfa59ac99c12b /numpy/add_newdocs.py
parent6510cce13410a9fff4d92f6390c16a7788b1a892 (diff)
downloadnumpy-c9d1849332ae5bf73299ea1268f6a55f78624688.tar.gz
ENH: core: Add dtype= and order= parameters to zeros_like, ones_like, and empty_like
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py52
1 files changed, 52 insertions, 0 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index 095eba15d..28eead38c 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -413,6 +413,58 @@ add_newdoc('numpy.core.multiarray', 'empty',
""")
+add_newdoc('numpy.core.multiarray', 'empty_like',
+ """
+ empty_like(a, dtype=None, order='K')
+
+ Return a new array with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ a : array_like
+ The shape and data-type of `a` define these same attributes of the
+ returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if ``a`` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of ``a`` as closely
+ as possible.
+
+ Returns
+ -------
+ out : ndarray
+ Array of uninitialized (arbitrary) data with the same
+ shape and type as `a`.
+
+ See Also
+ --------
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ empty : Return a new uninitialized array.
+ ones : Return a new array setting values to one.
+ zeros : Return a new array setting values to zero.
+
+ Notes
+ -----
+ This function does *not* initialize the returned array; to do that use
+ `zeros_like` or `ones_like` instead. It may be marginally faster than
+ the functions that do set the array values.
+
+ Examples
+ --------
+ >>> a = ([1,2,3], [4,5,6]) # a is array-like
+ >>> np.empty_like(a)
+ array([[-1073741821, -1073741821, 3], #random
+ [ 0, 0, -1073741821]])
+ >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
+ >>> np.empty_like(a)
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
+ [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
+
+ """)
+
add_newdoc('numpy.core.multiarray', 'scalar',
"""