summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
authorPauli Virtanen <pav@iki.fi>2010-10-14 11:04:51 +0200
committerPauli Virtanen <pav@iki.fi>2010-10-14 11:05:01 +0200
commiteca8f94e294003336d901b7e718375fad0c2619c (patch)
tree63fe3e1fe1ab35298f993f56f70560a9b88d35d7 /numpy/add_newdocs.py
parent1ee71d93fd069a51f45b4fa91e9e91d083a9334e (diff)
downloadnumpy-eca8f94e294003336d901b7e718375fad0c2619c.tar.gz
BUG: DOC: fix invalid vdot documentation
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py23
1 files changed, 9 insertions, 14 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index cf57c031b..3557c00a3 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -1295,12 +1295,9 @@ add_newdoc('numpy.core', 'vdot',
dot(`a`, `b`). If the first argument is complex the complex conjugate
of the first argument is used for the calculation of the dot product.
- For 2-D arrays it is equivalent to matrix multiplication, and for 1-D
- arrays to inner product of vectors (with complex conjugation of `a`).
- For N dimensions it is a sum product over the last axis of `a` and
- the second-to-last of `b`::
-
- dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
+ Note that `vdot` handles multidimensional arrays differently than `dot`:
+ it does *not* perform a matrix product, but flattens input arguments
+ to 1-D vectors first. Consequently, it should only be used for vectors.
Parameters
----------
@@ -1313,7 +1310,7 @@ add_newdoc('numpy.core', 'vdot',
Returns
-------
output : ndarray
- Returns dot product of `a` and `b`. Can be an int, float, or
+ Dot product of `a` and `b`. Can be an int, float, or
complex depending on the types of `a` and `b`.
See Also
@@ -1321,13 +1318,6 @@ add_newdoc('numpy.core', 'vdot',
dot : Return the dot product without using the complex conjugate of the
first argument.
- Notes
- -----
- The dot product is the summation of element wise multiplication.
-
- .. math::
- a \\cdot b = \\sum_{i=1}^n a_i^*b_i = a_1^*b_1+a_2^*b_2+\\cdots+a_n^*b_n
-
Examples
--------
>>> a = np.array([1+2j,3+4j])
@@ -1336,12 +1326,17 @@ add_newdoc('numpy.core', 'vdot',
(70-8j)
>>> np.vdot(b, a)
(70+8j)
+
+ Note that higher-dimensional arrays are flattened!
+
>>> a = np.array([[1, 4], [5, 6]])
>>> b = np.array([[4, 1], [2, 2]])
>>> np.vdot(a, b)
30
>>> np.vdot(b, a)
30
+ >>> 1*4 + 4*1 + 5*2 + 6*2
+ 30
""")