diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2021-08-23 21:32:20 -0600 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-08-23 21:32:20 -0600 |
commit | 098f874144161b6a49efa5108846a408ca8f39b8 (patch) | |
tree | d618c32a54705d38e5458669774c88d9f6225212 /numpy/array_api/_array_object.py | |
parent | a3ac75c6f92ed158777492f343dc59adeacb745c (diff) | |
parent | 7091e4c48ce7af8a5263b6808a6d7976d4af4c6f (diff) | |
download | numpy-098f874144161b6a49efa5108846a408ca8f39b8.tar.gz |
Merge pull request #18585 from data-apis/array-api
ENH: Implementation of the NEP 47 (adopting the array API standard)
Diffstat (limited to 'numpy/array_api/_array_object.py')
-rw-r--r-- | numpy/array_api/_array_object.py | 1029 |
1 files changed, 1029 insertions, 0 deletions
diff --git a/numpy/array_api/_array_object.py b/numpy/array_api/_array_object.py new file mode 100644 index 000000000..2d746e78b --- /dev/null +++ b/numpy/array_api/_array_object.py @@ -0,0 +1,1029 @@ +""" +Wrapper class around the ndarray object for the array API standard. + +The array API standard defines some behaviors differently than ndarray, in +particular, type promotion rules are different (the standard has no +value-based casting). The standard also specifies a more limited subset of +array methods and functionalities than are implemented on ndarray. Since the +goal of the array_api namespace is to be a minimal implementation of the array +API standard, we need to define a separate wrapper class for the array_api +namespace. + +The standard compliant class is only a wrapper class. It is *not* a subclass +of ndarray. +""" + +from __future__ import annotations + +import operator +from enum import IntEnum +from ._creation_functions import asarray +from ._dtypes import ( + _all_dtypes, + _boolean_dtypes, + _integer_dtypes, + _integer_or_boolean_dtypes, + _floating_dtypes, + _numeric_dtypes, + _result_type, + _dtype_categories, +) + +from typing import TYPE_CHECKING, Optional, Tuple, Union + +if TYPE_CHECKING: + from ._typing import PyCapsule, Device, Dtype + +import numpy as np + +from numpy import array_api + + +class Array: + """ + n-d array object for the array API namespace. + + See the docstring of :py:obj:`np.ndarray <numpy.ndarray>` for more + information. + + This is a wrapper around numpy.ndarray that restricts the usage to only + those things that are required by the array API namespace. Note, + attributes on this object that start with a single underscore are not part + of the API specification and should only be used internally. This object + should not be constructed directly. Rather, use one of the creation + functions, such as asarray(). + + """ + + # Use a custom constructor instead of __init__, as manually initializing + # this class is not supported API. + @classmethod + def _new(cls, x, /): + """ + This is a private method for initializing the array API Array + object. + + Functions outside of the array_api submodule should not use this + method. Use one of the creation functions instead, such as + ``asarray``. + + """ + obj = super().__new__(cls) + # Note: The spec does not have array scalars, only 0-D arrays. + if isinstance(x, np.generic): + # Convert the array scalar to a 0-D array + x = np.asarray(x) + if x.dtype not in _all_dtypes: + raise TypeError( + f"The array_api namespace does not support the dtype '{x.dtype}'" + ) + obj._array = x + return obj + + # Prevent Array() from working + def __new__(cls, *args, **kwargs): + raise TypeError( + "The array_api Array object should not be instantiated directly. Use an array creation function, such as asarray(), instead." + ) + + # These functions are not required by the spec, but are implemented for + # the sake of usability. + + def __str__(self: Array, /) -> str: + """ + Performs the operation __str__. + """ + return self._array.__str__().replace("array", "Array") + + def __repr__(self: Array, /) -> str: + """ + Performs the operation __repr__. + """ + return f"Array({np.array2string(self._array, separator=', ')}, dtype={self.dtype.name})" + + # These are various helper functions to make the array behavior match the + # spec in places where it either deviates from or is more strict than + # NumPy behavior + + def _check_allowed_dtypes(self, other, dtype_category, op): + """ + Helper function for operators to only allow specific input dtypes + + Use like + + other = self._check_allowed_dtypes(other, 'numeric', '__add__') + if other is NotImplemented: + return other + """ + + if self.dtype not in _dtype_categories[dtype_category]: + raise TypeError(f"Only {dtype_category} dtypes are allowed in {op}") + if isinstance(other, (int, float, bool)): + other = self._promote_scalar(other) + elif isinstance(other, Array): + if other.dtype not in _dtype_categories[dtype_category]: + raise TypeError(f"Only {dtype_category} dtypes are allowed in {op}") + else: + return NotImplemented + + # This will raise TypeError for type combinations that are not allowed + # to promote in the spec (even if the NumPy array operator would + # promote them). + res_dtype = _result_type(self.dtype, other.dtype) + if op.startswith("__i"): + # Note: NumPy will allow in-place operators in some cases where + # the type promoted operator does not match the left-hand side + # operand. For example, + + # >>> a = np.array(1, dtype=np.int8) + # >>> a += np.array(1, dtype=np.int16) + + # The spec explicitly disallows this. + if res_dtype != self.dtype: + raise TypeError( + f"Cannot perform {op} with dtypes {self.dtype} and {other.dtype}" + ) + + return other + + # Helper function to match the type promotion rules in the spec + def _promote_scalar(self, scalar): + """ + Returns a promoted version of a Python scalar appropriate for use with + operations on self. + + This may raise an OverflowError in cases where the scalar is an + integer that is too large to fit in a NumPy integer dtype, or + TypeError when the scalar type is incompatible with the dtype of self. + """ + if isinstance(scalar, bool): + if self.dtype not in _boolean_dtypes: + raise TypeError( + "Python bool scalars can only be promoted with bool arrays" + ) + elif isinstance(scalar, int): + if self.dtype in _boolean_dtypes: + raise TypeError( + "Python int scalars cannot be promoted with bool arrays" + ) + elif isinstance(scalar, float): + if self.dtype not in _floating_dtypes: + raise TypeError( + "Python float scalars can only be promoted with floating-point arrays." + ) + else: + raise TypeError("'scalar' must be a Python scalar") + + # Note: the spec only specifies integer-dtype/int promotion + # behavior for integers within the bounds of the integer dtype. + # Outside of those bounds we use the default NumPy behavior (either + # cast or raise OverflowError). + return Array._new(np.array(scalar, self.dtype)) + + @staticmethod + def _normalize_two_args(x1, x2): + """ + Normalize inputs to two arg functions to fix type promotion rules + + NumPy deviates from the spec type promotion rules in cases where one + argument is 0-dimensional and the other is not. For example: + + >>> import numpy as np + >>> a = np.array([1.0], dtype=np.float32) + >>> b = np.array(1.0, dtype=np.float64) + >>> np.add(a, b) # The spec says this should be float64 + array([2.], dtype=float32) + + To fix this, we add a dimension to the 0-dimension array before passing it + through. This works because a dimension would be added anyway from + broadcasting, so the resulting shape is the same, but this prevents NumPy + from not promoting the dtype. + """ + # Another option would be to use signature=(x1.dtype, x2.dtype, None), + # but that only works for ufuncs, so we would have to call the ufuncs + # directly in the operator methods. One should also note that this + # sort of trick wouldn't work for functions like searchsorted, which + # don't do normal broadcasting, but there aren't any functions like + # that in the array API namespace. + if x1.ndim == 0 and x2.ndim != 0: + # The _array[None] workaround was chosen because it is relatively + # performant. broadcast_to(x1._array, x2.shape) is much slower. We + # could also manually type promote x2, but that is more complicated + # and about the same performance as this. + x1 = Array._new(x1._array[None]) + elif x2.ndim == 0 and x1.ndim != 0: + x2 = Array._new(x2._array[None]) + return (x1, x2) + + # Note: A large fraction of allowed indices are disallowed here (see the + # docstring below) + @staticmethod + def _validate_index(key, shape): + """ + Validate an index according to the array API. + + The array API specification only requires a subset of indices that are + supported by NumPy. This function will reject any index that is + allowed by NumPy but not required by the array API specification. We + always raise ``IndexError`` on such indices (the spec does not require + any specific behavior on them, but this makes the NumPy array API + namespace a minimal implementation of the spec). See + https://data-apis.org/array-api/latest/API_specification/indexing.html + for the full list of required indexing behavior + + This function either raises IndexError if the index ``key`` is + invalid, or a new key to be used in place of ``key`` in indexing. It + only raises ``IndexError`` on indices that are not already rejected by + NumPy, as NumPy will already raise the appropriate error on such + indices. ``shape`` may be None, in which case, only cases that are + independent of the array shape are checked. + + The following cases are allowed by NumPy, but not specified by the array + API specification: + + - The start and stop of a slice may not be out of bounds. In + particular, for a slice ``i:j:k`` on an axis of size ``n``, only the + following are allowed: + + - ``i`` or ``j`` omitted (``None``). + - ``-n <= i <= max(0, n - 1)``. + - For ``k > 0`` or ``k`` omitted (``None``), ``-n <= j <= n``. + - For ``k < 0``, ``-n - 1 <= j <= max(0, n - 1)``. + + - Boolean array indices are not allowed as part of a larger tuple + index. + + - Integer array indices are not allowed (with the exception of 0-D + arrays, which are treated the same as scalars). + + Additionally, it should be noted that indices that would return a + scalar in NumPy will return a 0-D array. Array scalars are not allowed + in the specification, only 0-D arrays. This is done in the + ``Array._new`` constructor, not this function. + + """ + if isinstance(key, slice): + if shape is None: + return key + if shape == (): + return key + size = shape[0] + # Ensure invalid slice entries are passed through. + if key.start is not None: + try: + operator.index(key.start) + except TypeError: + return key + if not (-size <= key.start <= max(0, size - 1)): + raise IndexError( + "Slices with out-of-bounds start are not allowed in the array API namespace" + ) + if key.stop is not None: + try: + operator.index(key.stop) + except TypeError: + return key + step = 1 if key.step is None else key.step + if (step > 0 and not (-size <= key.stop <= size) + or step < 0 and not (-size - 1 <= key.stop <= max(0, size - 1))): + raise IndexError("Slices with out-of-bounds stop are not allowed in the array API namespace") + return key + + elif isinstance(key, tuple): + key = tuple(Array._validate_index(idx, None) for idx in key) + + for idx in key: + if ( + isinstance(idx, np.ndarray) + and idx.dtype in _boolean_dtypes + or isinstance(idx, (bool, np.bool_)) + ): + if len(key) == 1: + return key + raise IndexError( + "Boolean array indices combined with other indices are not allowed in the array API namespace" + ) + if isinstance(idx, tuple): + raise IndexError( + "Nested tuple indices are not allowed in the array API namespace" + ) + + if shape is None: + return key + n_ellipsis = key.count(...) + if n_ellipsis > 1: + return key + ellipsis_i = key.index(...) if n_ellipsis else len(key) + + for idx, size in list(zip(key[:ellipsis_i], shape)) + list( + zip(key[:ellipsis_i:-1], shape[:ellipsis_i:-1]) + ): + Array._validate_index(idx, (size,)) + return key + elif isinstance(key, bool): + return key + elif isinstance(key, Array): + if key.dtype in _integer_dtypes: + if key.ndim != 0: + raise IndexError( + "Non-zero dimensional integer array indices are not allowed in the array API namespace" + ) + return key._array + elif key is Ellipsis: + return key + elif key is None: + raise IndexError( + "newaxis indices are not allowed in the array API namespace" + ) + try: + return operator.index(key) + except TypeError: + # Note: This also omits boolean arrays that are not already in + # Array() form, like a list of booleans. + raise IndexError( + "Only integers, slices (`:`), ellipsis (`...`), and boolean arrays are valid indices in the array API namespace" + ) + + # Everything below this line is required by the spec. + + def __abs__(self: Array, /) -> Array: + """ + Performs the operation __abs__. + """ + if self.dtype not in _numeric_dtypes: + raise TypeError("Only numeric dtypes are allowed in __abs__") + res = self._array.__abs__() + return self.__class__._new(res) + + def __add__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __add__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__add__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__add__(other._array) + return self.__class__._new(res) + + def __and__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __and__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__and__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__and__(other._array) + return self.__class__._new(res) + + def __array_namespace__( + self: Array, /, *, api_version: Optional[str] = None + ) -> object: + if api_version is not None and not api_version.startswith("2021."): + raise ValueError(f"Unrecognized array API version: {api_version!r}") + return array_api + + def __bool__(self: Array, /) -> bool: + """ + Performs the operation __bool__. + """ + # Note: This is an error here. + if self._array.ndim != 0: + raise TypeError("bool is only allowed on arrays with 0 dimensions") + res = self._array.__bool__() + return res + + def __dlpack__(self: Array, /, *, stream: None = None) -> PyCapsule: + """ + Performs the operation __dlpack__. + """ + res = self._array.__dlpack__(stream=stream) + return self.__class__._new(res) + + def __dlpack_device__(self: Array, /) -> Tuple[IntEnum, int]: + """ + Performs the operation __dlpack_device__. + """ + # Note: device support is required for this + res = self._array.__dlpack_device__() + return self.__class__._new(res) + + def __eq__(self: Array, other: Union[int, float, bool, Array], /) -> Array: + """ + Performs the operation __eq__. + """ + # Even though "all" dtypes are allowed, we still require them to be + # promotable with each other. + other = self._check_allowed_dtypes(other, "all", "__eq__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__eq__(other._array) + return self.__class__._new(res) + + def __float__(self: Array, /) -> float: + """ + Performs the operation __float__. + """ + # Note: This is an error here. + if self._array.ndim != 0: + raise TypeError("float is only allowed on arrays with 0 dimensions") + res = self._array.__float__() + return res + + def __floordiv__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __floordiv__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__floordiv__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__floordiv__(other._array) + return self.__class__._new(res) + + def __ge__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __ge__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__ge__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__ge__(other._array) + return self.__class__._new(res) + + def __getitem__( + self: Array, + key: Union[ + int, slice, ellipsis, Tuple[Union[int, slice, ellipsis], ...], Array + ], + /, + ) -> Array: + """ + Performs the operation __getitem__. + """ + # Note: Only indices required by the spec are allowed. See the + # docstring of _validate_index + key = self._validate_index(key, self.shape) + res = self._array.__getitem__(key) + return self._new(res) + + def __gt__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __gt__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__gt__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__gt__(other._array) + return self.__class__._new(res) + + def __int__(self: Array, /) -> int: + """ + Performs the operation __int__. + """ + # Note: This is an error here. + if self._array.ndim != 0: + raise TypeError("int is only allowed on arrays with 0 dimensions") + res = self._array.__int__() + return res + + def __invert__(self: Array, /) -> Array: + """ + Performs the operation __invert__. + """ + if self.dtype not in _integer_or_boolean_dtypes: + raise TypeError("Only integer or boolean dtypes are allowed in __invert__") + res = self._array.__invert__() + return self.__class__._new(res) + + def __le__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __le__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__le__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__le__(other._array) + return self.__class__._new(res) + + # Note: __len__ may end up being removed from the array API spec. + def __len__(self, /) -> int: + """ + Performs the operation __len__. + """ + return self._array.__len__() + + def __lshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __lshift__. + """ + other = self._check_allowed_dtypes(other, "integer", "__lshift__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__lshift__(other._array) + return self.__class__._new(res) + + def __lt__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __lt__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__lt__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__lt__(other._array) + return self.__class__._new(res) + + def __matmul__(self: Array, other: Array, /) -> Array: + """ + Performs the operation __matmul__. + """ + # matmul is not defined for scalars, but without this, we may get + # the wrong error message from asarray. + other = self._check_allowed_dtypes(other, "numeric", "__matmul__") + if other is NotImplemented: + return other + res = self._array.__matmul__(other._array) + return self.__class__._new(res) + + def __mod__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __mod__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__mod__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__mod__(other._array) + return self.__class__._new(res) + + def __mul__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __mul__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__mul__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__mul__(other._array) + return self.__class__._new(res) + + def __ne__(self: Array, other: Union[int, float, bool, Array], /) -> Array: + """ + Performs the operation __ne__. + """ + other = self._check_allowed_dtypes(other, "all", "__ne__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__ne__(other._array) + return self.__class__._new(res) + + def __neg__(self: Array, /) -> Array: + """ + Performs the operation __neg__. + """ + if self.dtype not in _numeric_dtypes: + raise TypeError("Only numeric dtypes are allowed in __neg__") + res = self._array.__neg__() + return self.__class__._new(res) + + def __or__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __or__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__or__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__or__(other._array) + return self.__class__._new(res) + + def __pos__(self: Array, /) -> Array: + """ + Performs the operation __pos__. + """ + if self.dtype not in _numeric_dtypes: + raise TypeError("Only numeric dtypes are allowed in __pos__") + res = self._array.__pos__() + return self.__class__._new(res) + + # PEP 484 requires int to be a subtype of float, but __pow__ should not + # accept int. + def __pow__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __pow__. + """ + from ._elementwise_functions import pow + + other = self._check_allowed_dtypes(other, "floating-point", "__pow__") + if other is NotImplemented: + return other + # Note: NumPy's __pow__ does not follow type promotion rules for 0-d + # arrays, so we use pow() here instead. + return pow(self, other) + + def __rshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __rshift__. + """ + other = self._check_allowed_dtypes(other, "integer", "__rshift__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rshift__(other._array) + return self.__class__._new(res) + + def __setitem__( + self, + key: Union[ + int, slice, ellipsis, Tuple[Union[int, slice, ellipsis], ...], Array + ], + value: Union[int, float, bool, Array], + /, + ) -> None: + """ + Performs the operation __setitem__. + """ + # Note: Only indices required by the spec are allowed. See the + # docstring of _validate_index + key = self._validate_index(key, self.shape) + self._array.__setitem__(key, asarray(value)._array) + + def __sub__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __sub__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__sub__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__sub__(other._array) + return self.__class__._new(res) + + # PEP 484 requires int to be a subtype of float, but __truediv__ should + # not accept int. + def __truediv__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __truediv__. + """ + other = self._check_allowed_dtypes(other, "floating-point", "__truediv__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__truediv__(other._array) + return self.__class__._new(res) + + def __xor__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __xor__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__xor__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__xor__(other._array) + return self.__class__._new(res) + + def __iadd__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __iadd__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__iadd__") + if other is NotImplemented: + return other + self._array.__iadd__(other._array) + return self + + def __radd__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __radd__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__radd__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__radd__(other._array) + return self.__class__._new(res) + + def __iand__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __iand__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__iand__") + if other is NotImplemented: + return other + self._array.__iand__(other._array) + return self + + def __rand__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __rand__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__rand__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rand__(other._array) + return self.__class__._new(res) + + def __ifloordiv__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __ifloordiv__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__ifloordiv__") + if other is NotImplemented: + return other + self._array.__ifloordiv__(other._array) + return self + + def __rfloordiv__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rfloordiv__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__rfloordiv__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rfloordiv__(other._array) + return self.__class__._new(res) + + def __ilshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __ilshift__. + """ + other = self._check_allowed_dtypes(other, "integer", "__ilshift__") + if other is NotImplemented: + return other + self._array.__ilshift__(other._array) + return self + + def __rlshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __rlshift__. + """ + other = self._check_allowed_dtypes(other, "integer", "__rlshift__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rlshift__(other._array) + return self.__class__._new(res) + + def __imatmul__(self: Array, other: Array, /) -> Array: + """ + Performs the operation __imatmul__. + """ + # Note: NumPy does not implement __imatmul__. + + # matmul is not defined for scalars, but without this, we may get + # the wrong error message from asarray. + other = self._check_allowed_dtypes(other, "numeric", "__imatmul__") + if other is NotImplemented: + return other + + # __imatmul__ can only be allowed when it would not change the shape + # of self. + other_shape = other.shape + if self.shape == () or other_shape == (): + raise ValueError("@= requires at least one dimension") + if len(other_shape) == 1 or other_shape[-1] != other_shape[-2]: + raise ValueError("@= cannot change the shape of the input array") + self._array[:] = self._array.__matmul__(other._array) + return self + + def __rmatmul__(self: Array, other: Array, /) -> Array: + """ + Performs the operation __rmatmul__. + """ + # matmul is not defined for scalars, but without this, we may get + # the wrong error message from asarray. + other = self._check_allowed_dtypes(other, "numeric", "__rmatmul__") + if other is NotImplemented: + return other + res = self._array.__rmatmul__(other._array) + return self.__class__._new(res) + + def __imod__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __imod__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__imod__") + if other is NotImplemented: + return other + self._array.__imod__(other._array) + return self + + def __rmod__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rmod__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__rmod__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rmod__(other._array) + return self.__class__._new(res) + + def __imul__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __imul__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__imul__") + if other is NotImplemented: + return other + self._array.__imul__(other._array) + return self + + def __rmul__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rmul__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__rmul__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rmul__(other._array) + return self.__class__._new(res) + + def __ior__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __ior__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__ior__") + if other is NotImplemented: + return other + self._array.__ior__(other._array) + return self + + def __ror__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __ror__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__ror__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__ror__(other._array) + return self.__class__._new(res) + + def __ipow__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __ipow__. + """ + other = self._check_allowed_dtypes(other, "floating-point", "__ipow__") + if other is NotImplemented: + return other + self._array.__ipow__(other._array) + return self + + def __rpow__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __rpow__. + """ + from ._elementwise_functions import pow + + other = self._check_allowed_dtypes(other, "floating-point", "__rpow__") + if other is NotImplemented: + return other + # Note: NumPy's __pow__ does not follow the spec type promotion rules + # for 0-d arrays, so we use pow() here instead. + return pow(other, self) + + def __irshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __irshift__. + """ + other = self._check_allowed_dtypes(other, "integer", "__irshift__") + if other is NotImplemented: + return other + self._array.__irshift__(other._array) + return self + + def __rrshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __rrshift__. + """ + other = self._check_allowed_dtypes(other, "integer", "__rrshift__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rrshift__(other._array) + return self.__class__._new(res) + + def __isub__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __isub__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__isub__") + if other is NotImplemented: + return other + self._array.__isub__(other._array) + return self + + def __rsub__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rsub__. + """ + other = self._check_allowed_dtypes(other, "numeric", "__rsub__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rsub__(other._array) + return self.__class__._new(res) + + def __itruediv__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __itruediv__. + """ + other = self._check_allowed_dtypes(other, "floating-point", "__itruediv__") + if other is NotImplemented: + return other + self._array.__itruediv__(other._array) + return self + + def __rtruediv__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __rtruediv__. + """ + other = self._check_allowed_dtypes(other, "floating-point", "__rtruediv__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rtruediv__(other._array) + return self.__class__._new(res) + + def __ixor__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __ixor__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__ixor__") + if other is NotImplemented: + return other + self._array.__ixor__(other._array) + return self + + def __rxor__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __rxor__. + """ + other = self._check_allowed_dtypes(other, "integer or boolean", "__rxor__") + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rxor__(other._array) + return self.__class__._new(res) + + @property + def dtype(self) -> Dtype: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.dtype <numpy.ndarray.dtype>`. + + See its docstring for more information. + """ + return self._array.dtype + + @property + def device(self) -> Device: + return "cpu" + + @property + def ndim(self) -> int: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.ndim <numpy.ndarray.ndim>`. + + See its docstring for more information. + """ + return self._array.ndim + + @property + def shape(self) -> Tuple[int, ...]: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.shape <numpy.ndarray.shape>`. + + See its docstring for more information. + """ + return self._array.shape + + @property + def size(self) -> int: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.size <numpy.ndarray.size>`. + + See its docstring for more information. + """ + return self._array.size + + @property + def T(self) -> Array: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.T <numpy.ndarray.T>`. + + See its docstring for more information. + """ + return self._array.T |