diff options
author | czgdp1807 <gdp.1807@gmail.com> | 2021-09-03 12:17:26 +0530 |
---|---|---|
committer | czgdp1807 <gdp.1807@gmail.com> | 2021-09-03 12:17:26 +0530 |
commit | 781d0a7ac61ce007e65abcd4e30f2181e729ae61 (patch) | |
tree | f45f38a246bcefbca9ca8a08bd8ba55cbc6cdb15 /numpy/array_api/_creation_functions.py | |
parent | b341e4c3249817d2e14ddf71aa850a8a896b9303 (diff) | |
parent | 2ae1e068710174dc57b5ba5ad688517608efcf26 (diff) | |
download | numpy-781d0a7ac61ce007e65abcd4e30f2181e729ae61.tar.gz |
resolved conflicts
Diffstat (limited to 'numpy/array_api/_creation_functions.py')
-rw-r--r-- | numpy/array_api/_creation_functions.py | 316 |
1 files changed, 316 insertions, 0 deletions
diff --git a/numpy/array_api/_creation_functions.py b/numpy/array_api/_creation_functions.py new file mode 100644 index 000000000..e9c01e7e6 --- /dev/null +++ b/numpy/array_api/_creation_functions.py @@ -0,0 +1,316 @@ +from __future__ import annotations + + +from typing import TYPE_CHECKING, List, Optional, Tuple, Union + +if TYPE_CHECKING: + from ._typing import ( + Array, + Device, + Dtype, + NestedSequence, + SupportsDLPack, + SupportsBufferProtocol, + ) + from collections.abc import Sequence +from ._dtypes import _all_dtypes + +import numpy as np + + +def _check_valid_dtype(dtype): + # Note: Only spelling dtypes as the dtype objects is supported. + + # We use this instead of "dtype in _all_dtypes" because the dtype objects + # define equality with the sorts of things we want to disallw. + for d in (None,) + _all_dtypes: + if dtype is d: + return + raise ValueError("dtype must be one of the supported dtypes") + + +def asarray( + obj: Union[ + Array, + bool, + int, + float, + NestedSequence[bool | int | float], + SupportsDLPack, + SupportsBufferProtocol, + ], + /, + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, + copy: Optional[bool] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`. + + See its docstring for more information. + """ + # _array_object imports in this file are inside the functions to avoid + # circular imports + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + if copy is False: + # Note: copy=False is not yet implemented in np.asarray + raise NotImplementedError("copy=False is not yet implemented") + if isinstance(obj, Array) and (dtype is None or obj.dtype == dtype): + if copy is True: + return Array._new(np.array(obj._array, copy=True, dtype=dtype)) + return obj + if dtype is None and isinstance(obj, int) and (obj > 2 ** 64 or obj < -(2 ** 63)): + # Give a better error message in this case. NumPy would convert this + # to an object array. TODO: This won't handle large integers in lists. + raise OverflowError("Integer out of bounds for array dtypes") + res = np.asarray(obj, dtype=dtype) + return Array._new(res) + + +def arange( + start: Union[int, float], + /, + stop: Optional[Union[int, float]] = None, + step: Union[int, float] = 1, + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype)) + + +def empty( + shape: Union[int, Tuple[int, ...]], + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.empty(shape, dtype=dtype)) + + +def empty_like( + x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.empty_like(x._array, dtype=dtype)) + + +def eye( + n_rows: int, + n_cols: Optional[int] = None, + /, + *, + k: Optional[int] = 0, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype)) + + +def from_dlpack(x: object, /) -> Array: + # Note: dlpack support is not yet implemented on Array + raise NotImplementedError("DLPack support is not yet implemented") + + +def full( + shape: Union[int, Tuple[int, ...]], + fill_value: Union[int, float], + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.full <numpy.full>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + if isinstance(fill_value, Array) and fill_value.ndim == 0: + fill_value = fill_value._array + res = np.full(shape, fill_value, dtype=dtype) + if res.dtype not in _all_dtypes: + # This will happen if the fill value is not something that NumPy + # coerces to one of the acceptable dtypes. + raise TypeError("Invalid input to full") + return Array._new(res) + + +def full_like( + x: Array, + /, + fill_value: Union[int, float], + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + res = np.full_like(x._array, fill_value, dtype=dtype) + if res.dtype not in _all_dtypes: + # This will happen if the fill value is not something that NumPy + # coerces to one of the acceptable dtypes. + raise TypeError("Invalid input to full_like") + return Array._new(res) + + +def linspace( + start: Union[int, float], + stop: Union[int, float], + /, + num: int, + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, + endpoint: bool = True, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint)) + + +def meshgrid(*arrays: Sequence[Array], indexing: str = "xy") -> List[Array, ...]: + """ + Array API compatible wrapper for :py:func:`np.meshgrid <numpy.meshgrid>`. + + See its docstring for more information. + """ + from ._array_object import Array + + return [ + Array._new(array) + for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing) + ] + + +def ones( + shape: Union[int, Tuple[int, ...]], + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.ones(shape, dtype=dtype)) + + +def ones_like( + x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.ones_like(x._array, dtype=dtype)) + + +def zeros( + shape: Union[int, Tuple[int, ...]], + *, + dtype: Optional[Dtype] = None, + device: Optional[Device] = None, +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.zeros(shape, dtype=dtype)) + + +def zeros_like( + x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None +) -> Array: + """ + Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ["cpu", None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.zeros_like(x._array, dtype=dtype)) |