summaryrefslogtreecommitdiff
path: root/numpy/array_api/_linear_algebra_functions.py
diff options
context:
space:
mode:
authorAaron Meurer <asmeurer@gmail.com>2021-08-04 16:47:05 -0600
committerAaron Meurer <asmeurer@gmail.com>2021-08-04 16:50:30 -0600
commit6e57d829cb6628610e163524f203245b247a2839 (patch)
treef15f4900f995835bbd8526d7a4918a4d776d63e2 /numpy/array_api/_linear_algebra_functions.py
parent1596415c32f6008fcacc14a3a5394787aeb44265 (diff)
downloadnumpy-6e57d829cb6628610e163524f203245b247a2839.tar.gz
Rename numpy._array_api to numpy.array_api
Instead of the leading underscore, the experimentalness of the module will be indicated by omitting a warning on import. That we, we do not have to change the API from underscore to no underscore when the module is no longer experimental.
Diffstat (limited to 'numpy/array_api/_linear_algebra_functions.py')
-rw-r--r--numpy/array_api/_linear_algebra_functions.py58
1 files changed, 58 insertions, 0 deletions
diff --git a/numpy/array_api/_linear_algebra_functions.py b/numpy/array_api/_linear_algebra_functions.py
new file mode 100644
index 000000000..f13f9c541
--- /dev/null
+++ b/numpy/array_api/_linear_algebra_functions.py
@@ -0,0 +1,58 @@
+from __future__ import annotations
+
+from ._array_object import Array
+from ._dtypes import _numeric_dtypes, _result_type
+
+from typing import Optional, Sequence, Tuple, Union
+
+import numpy as np
+
+# einsum is not yet implemented in the array API spec.
+
+# def einsum():
+# """
+# Array API compatible wrapper for :py:func:`np.einsum <numpy.einsum>`.
+#
+# See its docstring for more information.
+# """
+# return np.einsum()
+
+def matmul(x1: Array, x2: Array, /) -> Array:
+ """
+ Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.
+
+ See its docstring for more information.
+ """
+ # Note: the restriction to numeric dtypes only is different from
+ # np.matmul.
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
+ raise TypeError('Only numeric dtypes are allowed in matmul')
+ # Call result type here just to raise on disallowed type combinations
+ _result_type(x1.dtype, x2.dtype)
+
+ return Array._new(np.matmul(x1._array, x2._array))
+
+# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
+def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
+ # Note: the restriction to numeric dtypes only is different from
+ # np.tensordot.
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
+ raise TypeError('Only numeric dtypes are allowed in tensordot')
+ # Call result type here just to raise on disallowed type combinations
+ _result_type(x1.dtype, x2.dtype)
+
+ return Array._new(np.tensordot(x1._array, x2._array, axes=axes))
+
+def transpose(x: Array, /, *, axes: Optional[Tuple[int, ...]] = None) -> Array:
+ """
+ Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`.
+
+ See its docstring for more information.
+ """
+ return Array._new(np.transpose(x._array, axes=axes))
+
+# Note: vecdot is not in NumPy
+def vecdot(x1: Array, x2: Array, /, *, axis: Optional[int] = None) -> Array:
+ if axis is None:
+ axis = -1
+ return tensordot(x1, x2, axes=((axis,), (axis,)))