summaryrefslogtreecommitdiff
path: root/numpy/array_api/_statistical_functions.py
diff options
context:
space:
mode:
authorDevin Shanahan <dshanahan88@gmail.com>2022-01-16 05:12:59 -0700
committerDevin Shanahan <dshanahan88@gmail.com>2022-01-16 05:12:59 -0700
commit0f66b6032a2c5039007d5041398561b452ddabef (patch)
treed030c1ae812e138f74a29b280cddde376d821ab8 /numpy/array_api/_statistical_functions.py
parent5a52c717fe45c7c6bdc3d20b178a00bffbe9e24e (diff)
parent7191d9a4773d77205349ac151f84b72c0ffcf848 (diff)
downloadnumpy-0f66b6032a2c5039007d5041398561b452ddabef.tar.gz
MAINT: Merge branch 'main' into delete-speedup
Diffstat (limited to 'numpy/array_api/_statistical_functions.py')
-rw-r--r--numpy/array_api/_statistical_functions.py115
1 files changed, 115 insertions, 0 deletions
diff --git a/numpy/array_api/_statistical_functions.py b/numpy/array_api/_statistical_functions.py
new file mode 100644
index 000000000..5bc831ac2
--- /dev/null
+++ b/numpy/array_api/_statistical_functions.py
@@ -0,0 +1,115 @@
+from __future__ import annotations
+
+from ._dtypes import (
+ _floating_dtypes,
+ _numeric_dtypes,
+)
+from ._array_object import Array
+from ._creation_functions import asarray
+from ._dtypes import float32, float64
+
+from typing import TYPE_CHECKING, Optional, Tuple, Union
+
+if TYPE_CHECKING:
+ from ._typing import Dtype
+
+import numpy as np
+
+
+def max(
+ x: Array,
+ /,
+ *,
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ keepdims: bool = False,
+) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in max")
+ return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
+
+
+def mean(
+ x: Array,
+ /,
+ *,
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ keepdims: bool = False,
+) -> Array:
+ if x.dtype not in _floating_dtypes:
+ raise TypeError("Only floating-point dtypes are allowed in mean")
+ return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
+
+
+def min(
+ x: Array,
+ /,
+ *,
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ keepdims: bool = False,
+) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in min")
+ return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
+
+
+def prod(
+ x: Array,
+ /,
+ *,
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ dtype: Optional[Dtype] = None,
+ keepdims: bool = False,
+) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in prod")
+ # Note: sum() and prod() always upcast float32 to float64 for dtype=None
+ # We need to do so here before computing the product to avoid overflow
+ if dtype is None and x.dtype == float32:
+ dtype = float64
+ return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))
+
+
+def std(
+ x: Array,
+ /,
+ *,
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ correction: Union[int, float] = 0.0,
+ keepdims: bool = False,
+) -> Array:
+ # Note: the keyword argument correction is different here
+ if x.dtype not in _floating_dtypes:
+ raise TypeError("Only floating-point dtypes are allowed in std")
+ return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
+
+
+def sum(
+ x: Array,
+ /,
+ *,
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ dtype: Optional[Dtype] = None,
+ keepdims: bool = False,
+) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in sum")
+ # Note: sum() and prod() always upcast integers to (u)int64 and float32 to
+ # float64 for dtype=None. `np.sum` does that too for integers, but not for
+ # float32, so we need to special-case it here
+ if dtype is None and x.dtype == float32:
+ dtype = float64
+ return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))
+
+
+def var(
+ x: Array,
+ /,
+ *,
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ correction: Union[int, float] = 0.0,
+ keepdims: bool = False,
+) -> Array:
+ # Note: the keyword argument correction is different here
+ if x.dtype not in _floating_dtypes:
+ raise TypeError("Only floating-point dtypes are allowed in var")
+ return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))