diff options
author | Aaron Meurer <asmeurer@gmail.com> | 2021-09-25 17:34:22 -0500 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-09-25 16:34:22 -0600 |
commit | 2d112a98ed7597c4120b31908384ae09b0304659 (patch) | |
tree | a03fcf59a0ca9cfff10ca2b346bd4c9d37268451 /numpy/array_api/_statistical_functions.py | |
parent | ac78192390943d90ebae2f4e209e194914d0bc97 (diff) | |
download | numpy-2d112a98ed7597c4120b31908384ae09b0304659.tar.gz |
ENH: Updates to numpy.array_api (#19937)
* Add __index__ to array_api and update __int__, __bool__, and __float__
The spec specifies that they should only work on arrays with corresponding
dtypes. __index__ is new in the spec since the initial PR, and works
identically to np.array.__index__.
* Add the to_device method to the array_api
This method is new since #18585. It does nothing in NumPy since NumPy does not
support non-CPU devices.
* Update transpose methods in the array_api
transpose() was renamed to matrix_transpose() and now operates on stacks of
matrices. A function to permute dimensions will be added once it is finalized
in the spec. The attribute mT was added and the T attribute was updated to
only operate on 2-dimensional arrays as per the spec.
* Restrict input dtypes in the array API statistical functions
* Add the dtype parameter to the array API sum() and prod()
* Add the function permute_dims() to the array_api namespace
permute_dims() is the replacement for transpose(), which was split into
permute_dims() and matrix_transpose().
* Add tril and triu to the array API namespace
* Fix the array_api Array.__repr__ to indent the array properly
* Make the Device type in the array_api just accept the string "cpu"
Diffstat (limited to 'numpy/array_api/_statistical_functions.py')
-rw-r--r-- | numpy/array_api/_statistical_functions.py | 35 |
1 files changed, 34 insertions, 1 deletions
diff --git a/numpy/array_api/_statistical_functions.py b/numpy/array_api/_statistical_functions.py index 63790b447..c5abf9468 100644 --- a/numpy/array_api/_statistical_functions.py +++ b/numpy/array_api/_statistical_functions.py @@ -1,8 +1,17 @@ from __future__ import annotations +from ._dtypes import ( + _floating_dtypes, + _numeric_dtypes, +) from ._array_object import Array +from ._creation_functions import asarray +from ._dtypes import float32, float64 -from typing import Optional, Tuple, Union +from typing import TYPE_CHECKING, Optional, Tuple, Union + +if TYPE_CHECKING: + from ._typing import Dtype import numpy as np @@ -14,6 +23,8 @@ def max( axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ) -> Array: + if x.dtype not in _numeric_dtypes: + raise TypeError("Only numeric dtypes are allowed in max") return Array._new(np.max(x._array, axis=axis, keepdims=keepdims)) @@ -24,6 +35,8 @@ def mean( axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ) -> Array: + if x.dtype not in _floating_dtypes: + raise TypeError("Only floating-point dtypes are allowed in mean") return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims)) @@ -34,6 +47,8 @@ def min( axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ) -> Array: + if x.dtype not in _numeric_dtypes: + raise TypeError("Only numeric dtypes are allowed in min") return Array._new(np.min(x._array, axis=axis, keepdims=keepdims)) @@ -42,8 +57,15 @@ def prod( /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, + dtype: Optional[Dtype] = None, keepdims: bool = False, ) -> Array: + if x.dtype not in _numeric_dtypes: + raise TypeError("Only numeric dtypes are allowed in prod") + # Note: sum() and prod() always upcast float32 to float64 for dtype=None + # We need to do so here before computing the product to avoid overflow + if dtype is None and x.dtype == float32: + x = asarray(x, dtype=float64) return Array._new(np.prod(x._array, axis=axis, keepdims=keepdims)) @@ -56,6 +78,8 @@ def std( keepdims: bool = False, ) -> Array: # Note: the keyword argument correction is different here + if x.dtype not in _floating_dtypes: + raise TypeError("Only floating-point dtypes are allowed in std") return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)) @@ -64,8 +88,15 @@ def sum( /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, + dtype: Optional[Dtype] = None, keepdims: bool = False, ) -> Array: + if x.dtype not in _numeric_dtypes: + raise TypeError("Only numeric dtypes are allowed in sum") + # Note: sum() and prod() always upcast float32 to float64 for dtype=None + # We need to do so here before summing to avoid overflow + if dtype is None and x.dtype == float32: + x = asarray(x, dtype=float64) return Array._new(np.sum(x._array, axis=axis, keepdims=keepdims)) @@ -78,4 +109,6 @@ def var( keepdims: bool = False, ) -> Array: # Note: the keyword argument correction is different here + if x.dtype not in _floating_dtypes: + raise TypeError("Only floating-point dtypes are allowed in var") return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims)) |