summaryrefslogtreecommitdiff
path: root/numpy/array_api/_statistical_functions.py
diff options
context:
space:
mode:
authorAaron Meurer <asmeurer@gmail.com>2021-09-25 17:34:22 -0500
committerGitHub <noreply@github.com>2021-09-25 16:34:22 -0600
commit2d112a98ed7597c4120b31908384ae09b0304659 (patch)
treea03fcf59a0ca9cfff10ca2b346bd4c9d37268451 /numpy/array_api/_statistical_functions.py
parentac78192390943d90ebae2f4e209e194914d0bc97 (diff)
downloadnumpy-2d112a98ed7597c4120b31908384ae09b0304659.tar.gz
ENH: Updates to numpy.array_api (#19937)
* Add __index__ to array_api and update __int__, __bool__, and __float__ The spec specifies that they should only work on arrays with corresponding dtypes. __index__ is new in the spec since the initial PR, and works identically to np.array.__index__. * Add the to_device method to the array_api This method is new since #18585. It does nothing in NumPy since NumPy does not support non-CPU devices. * Update transpose methods in the array_api transpose() was renamed to matrix_transpose() and now operates on stacks of matrices. A function to permute dimensions will be added once it is finalized in the spec. The attribute mT was added and the T attribute was updated to only operate on 2-dimensional arrays as per the spec. * Restrict input dtypes in the array API statistical functions * Add the dtype parameter to the array API sum() and prod() * Add the function permute_dims() to the array_api namespace permute_dims() is the replacement for transpose(), which was split into permute_dims() and matrix_transpose(). * Add tril and triu to the array API namespace * Fix the array_api Array.__repr__ to indent the array properly * Make the Device type in the array_api just accept the string "cpu"
Diffstat (limited to 'numpy/array_api/_statistical_functions.py')
-rw-r--r--numpy/array_api/_statistical_functions.py35
1 files changed, 34 insertions, 1 deletions
diff --git a/numpy/array_api/_statistical_functions.py b/numpy/array_api/_statistical_functions.py
index 63790b447..c5abf9468 100644
--- a/numpy/array_api/_statistical_functions.py
+++ b/numpy/array_api/_statistical_functions.py
@@ -1,8 +1,17 @@
from __future__ import annotations
+from ._dtypes import (
+ _floating_dtypes,
+ _numeric_dtypes,
+)
from ._array_object import Array
+from ._creation_functions import asarray
+from ._dtypes import float32, float64
-from typing import Optional, Tuple, Union
+from typing import TYPE_CHECKING, Optional, Tuple, Union
+
+if TYPE_CHECKING:
+ from ._typing import Dtype
import numpy as np
@@ -14,6 +23,8 @@ def max(
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in max")
return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
@@ -24,6 +35,8 @@ def mean(
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
+ if x.dtype not in _floating_dtypes:
+ raise TypeError("Only floating-point dtypes are allowed in mean")
return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
@@ -34,6 +47,8 @@ def min(
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in min")
return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
@@ -42,8 +57,15 @@ def prod(
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ dtype: Optional[Dtype] = None,
keepdims: bool = False,
) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in prod")
+ # Note: sum() and prod() always upcast float32 to float64 for dtype=None
+ # We need to do so here before computing the product to avoid overflow
+ if dtype is None and x.dtype == float32:
+ x = asarray(x, dtype=float64)
return Array._new(np.prod(x._array, axis=axis, keepdims=keepdims))
@@ -56,6 +78,8 @@ def std(
keepdims: bool = False,
) -> Array:
# Note: the keyword argument correction is different here
+ if x.dtype not in _floating_dtypes:
+ raise TypeError("Only floating-point dtypes are allowed in std")
return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
@@ -64,8 +88,15 @@ def sum(
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
+ dtype: Optional[Dtype] = None,
keepdims: bool = False,
) -> Array:
+ if x.dtype not in _numeric_dtypes:
+ raise TypeError("Only numeric dtypes are allowed in sum")
+ # Note: sum() and prod() always upcast float32 to float64 for dtype=None
+ # We need to do so here before summing to avoid overflow
+ if dtype is None and x.dtype == float32:
+ x = asarray(x, dtype=float64)
return Array._new(np.sum(x._array, axis=axis, keepdims=keepdims))
@@ -78,4 +109,6 @@ def var(
keepdims: bool = False,
) -> Array:
# Note: the keyword argument correction is different here
+ if x.dtype not in _floating_dtypes:
+ raise TypeError("Only floating-point dtypes are allowed in var")
return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))