diff options
author | Aaron Meurer <asmeurer@gmail.com> | 2021-08-04 16:47:05 -0600 |
---|---|---|
committer | Aaron Meurer <asmeurer@gmail.com> | 2021-08-04 16:50:30 -0600 |
commit | 6e57d829cb6628610e163524f203245b247a2839 (patch) | |
tree | f15f4900f995835bbd8526d7a4918a4d776d63e2 /numpy/array_api/_statistical_functions.py | |
parent | 1596415c32f6008fcacc14a3a5394787aeb44265 (diff) | |
download | numpy-6e57d829cb6628610e163524f203245b247a2839.tar.gz |
Rename numpy._array_api to numpy.array_api
Instead of the leading underscore, the experimentalness of the module will be
indicated by omitting a warning on import. That we, we do not have to change
the API from underscore to no underscore when the module is no longer
experimental.
Diffstat (limited to 'numpy/array_api/_statistical_functions.py')
-rw-r--r-- | numpy/array_api/_statistical_functions.py | 30 |
1 files changed, 30 insertions, 0 deletions
diff --git a/numpy/array_api/_statistical_functions.py b/numpy/array_api/_statistical_functions.py new file mode 100644 index 000000000..61fc60c46 --- /dev/null +++ b/numpy/array_api/_statistical_functions.py @@ -0,0 +1,30 @@ +from __future__ import annotations + +from ._array_object import Array + +from typing import Optional, Tuple, Union + +import numpy as np + +def max(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.max(x._array, axis=axis, keepdims=keepdims)) + +def mean(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims))) + +def min(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.min(x._array, axis=axis, keepdims=keepdims)) + +def prod(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims))) + +def std(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: + # Note: the keyword argument correction is different here + return Array._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))) + +def sum(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims))) + +def var(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: + # Note: the keyword argument correction is different here + return Array._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))) |