diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2018-05-29 09:34:22 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-05-29 09:34:22 -0700 |
commit | 2d0ee485f754062621eb20e0959baf0d4e119b64 (patch) | |
tree | b3a3fefa936ebad1616f9db719d12b1279364899 /numpy/core/fromnumeric.py | |
parent | 80de28de294b24f926133a86176f64f6a13c5411 (diff) | |
parent | 6246cf19fdda3ccca4338dcec2f3956294e30ce7 (diff) | |
download | numpy-2d0ee485f754062621eb20e0959baf0d4e119b64.tar.gz |
Merge branch 'master' into npzfile-mappin
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r-- | numpy/core/fromnumeric.py | 100 |
1 files changed, 83 insertions, 17 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py index 948c2139d..d1aae0aa0 100644 --- a/numpy/core/fromnumeric.py +++ b/numpy/core/fromnumeric.py @@ -140,6 +140,7 @@ def take(a, indices, axis=None, out=None, mode='raise'): -------- compress : Take elements using a boolean mask ndarray.take : equivalent method + take_along_axis : Take elements by matching the array and the index arrays Notes ----- @@ -478,6 +479,7 @@ def put(a, ind, v, mode='raise'): See Also -------- putmask, place + put_along_axis : Put elements by matching the array and the index arrays Examples -------- @@ -723,7 +725,9 @@ def argpartition(a, kth, axis=-1, kind='introselect', order=None): ------- index_array : ndarray, int Array of indices that partition `a` along the specified axis. - In other words, ``a[index_array]`` yields a partitioned `a`. + If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`. + More generally, ``np.take_along_axis(a, index_array, axis=a)`` always + yields the partitioned `a`, irrespective of dimensionality. See Also -------- @@ -904,6 +908,8 @@ def argsort(a, axis=-1, kind='quicksort', order=None): index_array : ndarray, int Array of indices that sort `a` along the specified axis. If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`. + More generally, ``np.take_along_axis(a, index_array, axis=a)`` always + yields the sorted `a`, irrespective of dimensionality. See Also -------- @@ -1336,10 +1342,11 @@ def diagonal(a, offset=0, axis1=0, axis2=1): Returns ------- array_of_diagonals : ndarray - If `a` is 2-D and not a `matrix`, a 1-D array of the same type as `a` - containing the diagonal is returned. If `a` is a `matrix`, a 1-D - array containing the diagonal is returned in order to maintain - backward compatibility. + If `a` is 2-D, then a 1-D array containing the diagonal and of the + same type as `a` is returned unless `a` is a `matrix`, in which case + a 1-D array rather than a (2-D) `matrix` is returned in order to + maintain backward compatibility. + If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2` are removed, and a new axis inserted at the end corresponding to the diagonal. @@ -1496,10 +1503,9 @@ def ravel(a, order='C'): Returns ------- y : array_like - If `a` is a matrix, y is a 1-D ndarray, otherwise y is an array of - the same subtype as `a`. The shape of the returned array is - ``(a.size,)``. Matrices are special cased for backward - compatibility. + y is an array of the same subtype as `a`, with shape ``(a.size,)``. + Note that matrices are special cased for backward compatibility, if `a` + is a matrix, then y is a 1-D ndarray. See Also -------- @@ -1812,7 +1818,7 @@ def clip(a, a_min, a_max, out=None): return _wrapfunc(a, 'clip', a_min, a_max, out=out) -def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): +def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, initial=np._NoValue): """ Sum of array elements over a given axis. @@ -1851,6 +1857,10 @@ def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + Starting value for the sum. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.15.0 Returns ------- @@ -1898,6 +1908,10 @@ def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) -128 + You can also start the sum with a value other than zero: + + >>> np.sum([10], initial=5) + 15 """ if isinstance(a, _gentype): # 2018-02-25, 1.15.0 @@ -1912,7 +1926,8 @@ def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): return out return res - return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims) + return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims, + initial=initial) def any(a, axis=None, out=None, keepdims=np._NoValue): @@ -2209,7 +2224,7 @@ def ptp(a, axis=None, out=None, keepdims=np._NoValue): return _methods._ptp(a, axis=axis, out=out, **kwargs) -def amax(a, axis=None, out=None, keepdims=np._NoValue): +def amax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue): """ Return the maximum of an array or maximum along an axis. @@ -2241,6 +2256,13 @@ def amax(a, axis=None, out=None, keepdims=np._NoValue): sub-class' method does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + The minimum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.15.0 + + Returns ------- amax : ndarray or scalar @@ -2293,11 +2315,26 @@ def amax(a, axis=None, out=None, keepdims=np._NoValue): >>> np.nanmax(b) 4.0 + You can use an initial value to compute the maximum of an empty slice, or + to initialize it to a different value: + + >>> np.max([[-50], [10]], axis=-1, initial=0) + array([ 0, 10]) + + Notice that the initial value is used as one of the elements for which the + maximum is determined, unlike for the default argument Python's max + function, which is only used for empty iterables. + + >>> np.max([5], initial=6) + 6 + >>> max([5], default=6) + 5 """ - return _wrapreduction(a, np.maximum, 'max', axis, None, out, keepdims=keepdims) + return _wrapreduction(a, np.maximum, 'max', axis, None, out, keepdims=keepdims, + initial=initial) -def amin(a, axis=None, out=None, keepdims=np._NoValue): +def amin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue): """ Return the minimum of an array or minimum along an axis. @@ -2329,6 +2366,12 @@ def amin(a, axis=None, out=None, keepdims=np._NoValue): sub-class' method does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + The maximum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.15.0 + Returns ------- amin : ndarray or scalar @@ -2381,8 +2424,22 @@ def amin(a, axis=None, out=None, keepdims=np._NoValue): >>> np.nanmin(b) 0.0 + >>> np.min([[-50], [10]], axis=-1, initial=0) + array([-50, 0]) + + Notice that the initial value is used as one of the elements for which the + minimum is determined, unlike for the default argument Python's max + function, which is only used for empty iterables. + + Notice that this isn't the same as Python's ``default`` argument. + + >>> np.min([6], initial=5) + 5 + >>> min([6], default=5) + 6 """ - return _wrapreduction(a, np.minimum, 'min', axis, None, out, keepdims=keepdims) + return _wrapreduction(a, np.minimum, 'min', axis, None, out, keepdims=keepdims, + initial=initial) def alen(a): @@ -2418,7 +2475,7 @@ def alen(a): return len(array(a, ndmin=1)) -def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): +def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, initial=np._NoValue): """ Return the product of array elements over a given axis. @@ -2458,6 +2515,10 @@ def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + The starting value for this product. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.15.0 Returns ------- @@ -2515,8 +2576,13 @@ def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): >>> np.prod(x).dtype == int True + You can also start the product with a value other than one: + + >>> np.prod([1, 2], initial=5) + 10 """ - return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, keepdims=keepdims) + return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, keepdims=keepdims, + initial=initial) def cumprod(a, axis=None, dtype=None, out=None): |