summaryrefslogtreecommitdiff
path: root/numpy/core/fromnumeric.py
diff options
context:
space:
mode:
authorLakshay Garg <lakshayg@outlook.in>2018-03-29 12:39:30 +0530
committerLakshay Garg <lakshayg@outlook.in>2018-03-29 12:39:30 +0530
commit4a2891748ab9ac8cafd7aaef10222c761e96f892 (patch)
tree02af2d738210dd548a746eb0b094488ebeb15538 /numpy/core/fromnumeric.py
parent14955ccf2a6d838705abb21b237179ecfdbae19f (diff)
downloadnumpy-4a2891748ab9ac8cafd7aaef10222c761e96f892.tar.gz
Remove NPY_STABLESORT enum
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r--numpy/core/fromnumeric.py19
1 files changed, 11 insertions, 8 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index ddf3314cf..63279ffb3 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -794,14 +794,13 @@ def sort(a, axis=-1, kind='quicksort', order=None):
order. The three available algorithms have the following
properties:
- =========== ======= ============= ============ =======
- kind speed worst case work space stable
- =========== ======= ============= ============ =======
- 'quicksort' 1 O(n^2) 0 no
- 'mergesort' 2 O(n*log(n)) ~n/2 yes
- 'stable' 2 O(n*log(n)) ~n/2 yes
- 'heapsort' 3 O(n*log(n)) 0 no
- =========== ======= ============= ============ =======
+ =========== ======= ============= ============ ========
+ kind speed worst case work space stable
+ =========== ======= ============= ============ ========
+ 'quicksort' 1 O(n^2) 0 no
+ 'mergesort' 2 O(n*log(n)) ~n/2 yes
+ 'heapsort' 3 O(n*log(n)) 0 no
+ =========== ======= ============= ============ ========
All the sort algorithms make temporary copies of the data when
sorting along any but the last axis. Consequently, sorting along
@@ -830,6 +829,10 @@ def sort(a, axis=-1, kind='quicksort', order=None):
heapsort when it does not make enough progress. This makes its
worst case O(n*log(n)).
+ 'stable' automatically choses the best stable sorting algorithm
+ for the data type being sorted. It is currently mapped to
+ merge sort.
+
Examples
--------
>>> a = np.array([[1,4],[3,1]])