diff options
author | ryanblak <rbtnet@gmail.com> | 2014-09-04 19:35:06 +0100 |
---|---|---|
committer | ryanblak <rbtnet@gmail.com> | 2014-09-04 19:35:06 +0100 |
commit | 537c7a66757d6ade9ae385f637339021ce28b02c (patch) | |
tree | 45a0d6e38fe3146948769f66e059fa96a1c36095 /numpy/core/fromnumeric.py | |
parent | 03dcd3b754d9a618c0c2c8c72bb225565758bbf5 (diff) | |
download | numpy-537c7a66757d6ade9ae385f637339021ce28b02c.tar.gz |
DOC: added doc for argmin
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r-- | numpy/core/fromnumeric.py | 48 |
1 files changed, 44 insertions, 4 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py index 49fd57e29..1cb1ed8bc 100644 --- a/numpy/core/fromnumeric.py +++ b/numpy/core/fromnumeric.py @@ -880,7 +880,7 @@ def argsort(a, axis=-1, kind='quicksort', order=None): def argmax(a, axis=None): """ - Indices of the maximum values along an axis. + Returns the indices of the maximum values along an axis. Parameters ---------- @@ -937,12 +937,52 @@ def argmax(a, axis=None): def argmin(a, axis=None): """ - Return the indices of the minimum values along an axis. + Returns the indices of the minimum values along an axis. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + By default, the index is into the flattened array, otherwise + along the specified axis. + + Returns + ------- + index_array : ndarray of ints + Array of indices into the array. It has the same shape as `a.shape` + with the dimension along `axis` removed. See Also -------- - argmax : Similar function. Please refer to `numpy.argmax` for detailed - documentation. + ndarray.argmin, argmax + amin : The minimum value along a given axis. + unravel_index : Convert a flat index into an index tuple. + + Notes + ----- + In case of multiple occurrences of the minimum values, the indices + corresponding to the first occurrence are returned. + + Examples + -------- + >>> a = np.arange(6).reshape(2,3) + >>> a + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.argmin(a) + 0 + >>> np.argmin(a, axis=0) + array([0, 0, 0]) + >>> np.argmin(a, axis=1) + array([0, 0]) + + >>> b = np.arange(6) + >>> b[4] = 0 + >>> b + array([0, 1, 2, 3, 0, 5]) + >>> np.argmin(b) # Only the first occurrence is returned. + 0 """ try: |