summaryrefslogtreecommitdiff
path: root/numpy/core/fromnumeric.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2017-02-28 14:03:27 +0000
committerEric Wieser <wieser.eric@gmail.com>2018-05-25 22:55:58 -0700
commit905e906d55fdcb8cc215de8aa287ea9654d1c95c (patch)
treeba7d36006b940a87d1dff93a1a8965f7f986c2ab /numpy/core/fromnumeric.py
parent84f582f25e168dbfd59b3be470bc8ebc46ee2d92 (diff)
downloadnumpy-905e906d55fdcb8cc215de8aa287ea9654d1c95c.tar.gz
ENH: Add (put|take)_along_axis as described in #8708
This is the reduced version that does not allow any insertion of extra dimensions
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r--numpy/core/fromnumeric.py8
1 files changed, 7 insertions, 1 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 0db5663f9..d1aae0aa0 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -140,6 +140,7 @@ def take(a, indices, axis=None, out=None, mode='raise'):
--------
compress : Take elements using a boolean mask
ndarray.take : equivalent method
+ take_along_axis : Take elements by matching the array and the index arrays
Notes
-----
@@ -478,6 +479,7 @@ def put(a, ind, v, mode='raise'):
See Also
--------
putmask, place
+ put_along_axis : Put elements by matching the array and the index arrays
Examples
--------
@@ -723,7 +725,9 @@ def argpartition(a, kth, axis=-1, kind='introselect', order=None):
-------
index_array : ndarray, int
Array of indices that partition `a` along the specified axis.
- In other words, ``a[index_array]`` yields a partitioned `a`.
+ If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`.
+ More generally, ``np.take_along_axis(a, index_array, axis=a)`` always
+ yields the partitioned `a`, irrespective of dimensionality.
See Also
--------
@@ -904,6 +908,8 @@ def argsort(a, axis=-1, kind='quicksort', order=None):
index_array : ndarray, int
Array of indices that sort `a` along the specified axis.
If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`.
+ More generally, ``np.take_along_axis(a, index_array, axis=a)`` always
+ yields the sorted `a`, irrespective of dimensionality.
See Also
--------