diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2017-10-05 11:46:42 -0600 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2017-10-05 13:14:28 -0600 |
commit | c730ffd2044fb2815c7b26c9ca9d6fea9f3d3091 (patch) | |
tree | 2abf81629da0eb650856f47e0242775a9c6cc375 /numpy/core/fromnumeric.py | |
parent | a94c15fcd6456c6df3a060a5fdae797649eb787e (diff) | |
download | numpy-c730ffd2044fb2815c7b26c9ca9d6fea9f3d3091.tar.gz |
DOC: Redo some examples of np.arg(sort|max|min)
[ci skip]
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r-- | numpy/core/fromnumeric.py | 36 |
1 files changed, 21 insertions, 15 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py index 78b156f21..ebeea6319 100644 --- a/numpy/core/fromnumeric.py +++ b/numpy/core/fromnumeric.py @@ -877,21 +877,21 @@ def argsort(a, axis=-1, kind='quicksort', order=None): array([[0, 3], [2, 2]]) - >>> np.argsort(x, axis=0) + >>> np.argsort(x, axis=0) # sorts along first axis (down) array([[0, 1], [1, 0]]) - >>> np.argsort(x, axis=1) + >>> np.argsort(x, axis=1) # sorts along last axis (across) array([[0, 1], [0, 1]]) Indices of the sorted elements of a N-dimensional array: - >>> np.unravel_index(np.argsort(x, axis=None), x.shape) + + >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) + >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) - >>> from np.testing import assert_equal - >>> assert_equal(x[(array([0, 1, 1, 0]), array([0, 0, 1, 1]))], np.sort(x, axis=None)) - >>> list(zip(*np.unravel_index(np.argsort(x, axis=None), x.shape))) - [(0, 0), (1, 0), (1, 1), (0, 1)] + >>> x[ind] # same as np.sort(x, axis=None) + array([0, 2, 2, 3]) Sorting with keys: @@ -955,16 +955,19 @@ def argmax(a, axis=None, out=None): >>> np.argmax(a, axis=1) array([2, 2]) - Indices of the maximal elements of a N-dimensional array: - >>> np.unravel_index(np.argmax(a, axis=None), a.shape) + Indexes of the maximal elements of a N-dimensional array: + + >>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape) + >>> ind (1, 2) - >>> np.testing.assert_equal(a[(1, 2)], np.max(a)) + >>> a[ind] + 5 >>> b = np.arange(6) >>> b[1] = 5 >>> b array([0, 5, 2, 3, 4, 5]) - >>> np.argmax(b) # Only the first occurrence is returned. + >>> np.argmax(b) # Only the first occurrence is returned. 1 """ @@ -1017,15 +1020,18 @@ def argmin(a, axis=None, out=None): array([0, 0]) Indices of the minimum elements of a N-dimensional array: - >>> np.unravel_index(np.argmin(a, axis=None), a.shape) + + >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape) + >>> ind (0, 0) - >>> np.testing.assert_equal(a[(0, 0)], np.min(a)) + >>> a[ind] + 0 >>> b = np.arange(6) >>> b[4] = 0 >>> b array([0, 1, 2, 3, 0, 5]) - >>> np.argmin(b) # Only the first occurrence is returned. + >>> np.argmin(b) # Only the first occurrence is returned. 0 """ @@ -2475,7 +2481,7 @@ def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): raised on overflow. That means that, on a 32-bit platform: >>> x = np.array([536870910, 536870910, 536870910, 536870910]) - >>> np.prod(x) #random + >>> np.prod(x) # random 16 The product of an empty array is the neutral element 1: |