summaryrefslogtreecommitdiff
path: root/numpy/core/numeric.py
diff options
context:
space:
mode:
authorPauli Virtanen <pav@iki.fi>2009-10-02 19:27:46 +0000
committerPauli Virtanen <pav@iki.fi>2009-10-02 19:27:46 +0000
commit1521f6689a3cc48d60a75097a7ffcf4d51f9dc47 (patch)
treea0f048838717b7ee43177007ec42c3102ea7be25 /numpy/core/numeric.py
parent8c7d1bc554e6b5bbb7900a2f6d976d72795bb454 (diff)
downloadnumpy-1521f6689a3cc48d60a75097a7ffcf4d51f9dc47.tar.gz
Docstring updates, part 1
Diffstat (limited to 'numpy/core/numeric.py')
-rw-r--r--numpy/core/numeric.py20
1 files changed, 13 insertions, 7 deletions
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index c961bcc0f..abe26aac3 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -48,14 +48,14 @@ ufunc = type(sin)
# originally from Fernando Perez's IPython
def zeros_like(a):
"""
- Returns an array of zeros with the same shape and type as a given array.
+ Return an array of zeros with the same shape and type as a given array.
Equivalent to ``a.copy().fill(0)``.
Parameters
----------
a : array_like
- The shape and data-type of `a` defines the parameters of
+ The shape and data-type of `a` define the parameters of
the returned array.
Returns
@@ -65,11 +65,11 @@ def zeros_like(a):
See Also
--------
- numpy.ones_like : Return an array of ones with shape and type of input.
- numpy.empty_like : Return an empty array with shape and type of input.
- numpy.zeros : Return a new array setting values to zero.
- numpy.ones : Return a new array setting values to one.
- numpy.empty : Return a new uninitialized array.
+ ones_like : Return an array of ones with shape and type of input.
+ empty_like : Return an empty array with shape and type of input.
+ zeros : Return a new array setting values to zero.
+ ones : Return a new array setting values to one.
+ empty : Return a new uninitialized array.
Examples
--------
@@ -82,6 +82,12 @@ def zeros_like(a):
array([[0, 0, 0],
[0, 0, 0]])
+ >>> y = np.arange(3, dtype=np.float)
+ >>> y
+ array([ 0., 1., 2.])
+ >>> np.zeros_like(y)
+ array([ 0., 0., 0.])
+
"""
if isinstance(a, ndarray):
res = ndarray.__new__(type(a), a.shape, a.dtype, order=a.flags.fnc)