summaryrefslogtreecommitdiff
path: root/numpy/core/numeric.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-08-15 11:31:08 -0600
committerCharles Harris <charlesr.harris@gmail.com>2013-08-15 11:31:08 -0600
commit31f526ef39dfe3dd079d9534530ba80aa32f8e79 (patch)
tree13b734353f44b758254ce529713cbeeb3ade28e2 /numpy/core/numeric.py
parent3c9c31b19038dbe49c145aa014aa45e0b29b5d4c (diff)
downloadnumpy-31f526ef39dfe3dd079d9534530ba80aa32f8e79.tar.gz
DOC: Merge doc updates from http://docs.scipy.org/numpy/patch/.
Preparatory to 1.8.0 branch.
Diffstat (limited to 'numpy/core/numeric.py')
-rw-r--r--numpy/core/numeric.py32
1 files changed, 16 insertions, 16 deletions
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 9ae1af654..e2c020ced 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -978,13 +978,16 @@ def outer(a,b):
Parameters
----------
- a, b : array_like, shape (M,), (N,)
- First and second input vectors. Inputs are flattened if they
- are not already 1-dimensional.
+ a : (M,) array_like
+ First input vector. Input is flattened if
+ not already 1-dimensional.
+ b : (N,) array_like
+ Second input vector. Input is flattened if
+ not already 1-dimensional.
Returns
-------
- out : ndarray, shape (M, N)
+ out : (M, N) ndarray
``out[i, j] = a[i] * b[j]``
See also
@@ -1057,27 +1060,24 @@ def tensordot(a, b, axes=2):
Compute tensor dot product along specified axes for arrays >= 1-D.
Given two tensors (arrays of dimension greater than or equal to one),
- ``a`` and ``b``, and an array_like object containing two array_like
- objects, ``(a_axes, b_axes)``, sum the products of ``a``'s and ``b``'s
+ `a` and `b`, and an array_like object containing two array_like
+ objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
elements (components) over the axes specified by ``a_axes`` and
``b_axes``. The third argument can be a single non-negative
integer_like scalar, ``N``; if it is such, then the last ``N``
- dimensions of ``a`` and the first ``N`` dimensions of ``b`` are summed
+ dimensions of `a` and the first ``N`` dimensions of `b` are summed
over.
Parameters
----------
a, b : array_like, len(shape) >= 1
Tensors to "dot".
-
axes : variable type
-
- * integer_like scalar
- Number of axes to sum over (applies to both arrays); or
-
- * array_like, shape = (2,), both elements array_like
- Axes to be summed over, first sequence applying to ``a``, second
- to ``b``.
+ * integer_like scalar
+ Number of axes to sum over (applies to both arrays); or
+ * (2,) array_like, both elements array_like of the same length
+ List of axes to be summed over, first sequence applying to `a`,
+ second to `b`.
See Also
--------
@@ -1086,7 +1086,7 @@ def tensordot(a, b, axes=2):
Notes
-----
When there is more than one axis to sum over - and they are not the last
- (first) axes of ``a`` (``b``) - the argument ``axes`` should consist of
+ (first) axes of `a` (`b`) - the argument `axes` should consist of
two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.