diff options
author | Daniel Lawrence <danny.p.lawrence@gmail.com> | 2019-03-02 13:11:36 +0000 |
---|---|---|
committer | Daniel Lawrence <danny.p.lawrence@gmail.com> | 2019-03-02 13:11:36 +0000 |
commit | 39402815350257cab421975d31bd99a96afb3151 (patch) | |
tree | d2f65683f8353407858ce220e1f79960dd248186 /numpy/core/numeric.py | |
parent | 2f2dfa19839d69a20713b2fe05ca1ca35f6454a7 (diff) | |
download | numpy-39402815350257cab421975d31bd99a96afb3151.tar.gz |
DOC: Removed incorrect claim regarding shape constraints for np.tensordot()
Diffstat (limited to 'numpy/core/numeric.py')
-rw-r--r-- | numpy/core/numeric.py | 18 |
1 files changed, 8 insertions, 10 deletions
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py index 386049410..1944ce4c7 100644 --- a/numpy/core/numeric.py +++ b/numpy/core/numeric.py @@ -1203,20 +1203,18 @@ def _tensordot_dispatcher(a, b, axes=None): @array_function_dispatch(_tensordot_dispatcher) def tensordot(a, b, axes=2): """ - Compute tensor dot product along specified axes for arrays >= 1-D. + Compute tensor dot product along specified axes. - Given two tensors (arrays of dimension greater than or equal to one), - `a` and `b`, and an array_like object containing two array_like - objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s - elements (components) over the axes specified by ``a_axes`` and - ``b_axes``. The third argument can be a single non-negative - integer_like scalar, ``N``; if it is such, then the last ``N`` - dimensions of `a` and the first ``N`` dimensions of `b` are summed - over. + Given two tensors,`a` and `b`, and an array_like object containing + two array_like objects, ``(a_axes, b_axes)``, sum the products of + `a`'s and `b`'s elements (components) over the axes specified by + ``a_axes`` and ``b_axes``. The third argument can be a single non-negative + integer_like scalar, ``N``; if it is such, then the last ``N``dimensions + of `a` and the first ``N`` dimensions of `b` are summed over. Parameters ---------- - a, b : array_like, len(shape) >= 1 + a, b : array_like Tensors to "dot". axes : int or (2,) array_like |