summaryrefslogtreecommitdiff
path: root/numpy/core/numeric.py
diff options
context:
space:
mode:
authorDaniel Lawrence <danny.p.lawrence@gmail.com>2019-03-02 13:11:36 +0000
committerDaniel Lawrence <danny.p.lawrence@gmail.com>2019-03-02 13:11:36 +0000
commit39402815350257cab421975d31bd99a96afb3151 (patch)
treed2f65683f8353407858ce220e1f79960dd248186 /numpy/core/numeric.py
parent2f2dfa19839d69a20713b2fe05ca1ca35f6454a7 (diff)
downloadnumpy-39402815350257cab421975d31bd99a96afb3151.tar.gz
DOC: Removed incorrect claim regarding shape constraints for np.tensordot()
Diffstat (limited to 'numpy/core/numeric.py')
-rw-r--r--numpy/core/numeric.py18
1 files changed, 8 insertions, 10 deletions
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 386049410..1944ce4c7 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -1203,20 +1203,18 @@ def _tensordot_dispatcher(a, b, axes=None):
@array_function_dispatch(_tensordot_dispatcher)
def tensordot(a, b, axes=2):
"""
- Compute tensor dot product along specified axes for arrays >= 1-D.
+ Compute tensor dot product along specified axes.
- Given two tensors (arrays of dimension greater than or equal to one),
- `a` and `b`, and an array_like object containing two array_like
- objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
- elements (components) over the axes specified by ``a_axes`` and
- ``b_axes``. The third argument can be a single non-negative
- integer_like scalar, ``N``; if it is such, then the last ``N``
- dimensions of `a` and the first ``N`` dimensions of `b` are summed
- over.
+ Given two tensors,`a` and `b`, and an array_like object containing
+ two array_like objects, ``(a_axes, b_axes)``, sum the products of
+ `a`'s and `b`'s elements (components) over the axes specified by
+ ``a_axes`` and ``b_axes``. The third argument can be a single non-negative
+ integer_like scalar, ``N``; if it is such, then the last ``N``dimensions
+ of `a` and the first ``N`` dimensions of `b` are summed over.
Parameters
----------
- a, b : array_like, len(shape) >= 1
+ a, b : array_like
Tensors to "dot".
axes : int or (2,) array_like