summaryrefslogtreecommitdiff
path: root/numpy/core/numeric.py
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2019-03-03 11:42:26 +0200
committerGitHub <noreply@github.com>2019-03-03 11:42:26 +0200
commitdde92f126643ae0c6c33d584c6a620b06e208134 (patch)
tree7d1e3d4b887e9833df17cbbbd8ab00941be40fdd /numpy/core/numeric.py
parentb5e2b029bbaaa9eca124cc8560f17c70e8a0e4e3 (diff)
parent3e8818c0f3b19d76015d1ae0478a8b50701bd4b4 (diff)
downloadnumpy-dde92f126643ae0c6c33d584c6a620b06e208134.tar.gz
Merge pull request #13071 from danielplawrence/test-docs-tensordot
DOC: Removed incorrect claim regarding shape constraints for np.tenso…
Diffstat (limited to 'numpy/core/numeric.py')
-rw-r--r--numpy/core/numeric.py18
1 files changed, 8 insertions, 10 deletions
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 386049410..42fee4eb7 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -1203,20 +1203,18 @@ def _tensordot_dispatcher(a, b, axes=None):
@array_function_dispatch(_tensordot_dispatcher)
def tensordot(a, b, axes=2):
"""
- Compute tensor dot product along specified axes for arrays >= 1-D.
+ Compute tensor dot product along specified axes.
- Given two tensors (arrays of dimension greater than or equal to one),
- `a` and `b`, and an array_like object containing two array_like
- objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
- elements (components) over the axes specified by ``a_axes`` and
- ``b_axes``. The third argument can be a single non-negative
- integer_like scalar, ``N``; if it is such, then the last ``N``
- dimensions of `a` and the first ``N`` dimensions of `b` are summed
- over.
+ Given two tensors, `a` and `b`, and an array_like object containing
+ two array_like objects, ``(a_axes, b_axes)``, sum the products of
+ `a`'s and `b`'s elements (components) over the axes specified by
+ ``a_axes`` and ``b_axes``. The third argument can be a single non-negative
+ integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions
+ of `a` and the first ``N`` dimensions of `b` are summed over.
Parameters
----------
- a, b : array_like, len(shape) >= 1
+ a, b : array_like
Tensors to "dot".
axes : int or (2,) array_like