diff options
author | Jarrod Millman <millman@berkeley.edu> | 2009-11-13 17:49:06 +0000 |
---|---|---|
committer | Jarrod Millman <millman@berkeley.edu> | 2009-11-13 17:49:06 +0000 |
commit | f07c79d3709a7f81219abc3c516fd772f469c167 (patch) | |
tree | eaff2baba0176a7c41e749fd61b88a421dcfb188 /numpy/core/numeric.py | |
parent | 3122ee546fc0617e195aeb288abe65b9ae95d983 (diff) | |
download | numpy-f07c79d3709a7f81219abc3c516fd772f469c167.tar.gz |
first set of checkins from the doc editor
Diffstat (limited to 'numpy/core/numeric.py')
-rw-r--r-- | numpy/core/numeric.py | 43 |
1 files changed, 31 insertions, 12 deletions
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py index 3ca2d988f..be10d5005 100644 --- a/numpy/core/numeric.py +++ b/numpy/core/numeric.py @@ -105,29 +105,43 @@ def zeros_like(a): def empty_like(a): """ - Create a new array with the same shape and type as another. + Return a new array with the same shape and type as a given array. Parameters ---------- - a : ndarray - Returned array will have same shape and type as `a`. + a : array_like + The shape and data-type of `a` define the parameters of the + returned array. + + Returns + ------- + out : ndarray + Array of random data with the same shape and type as `a`. See Also -------- - zeros_like, ones_like, zeros, ones, empty + ones_like : Return an array of ones with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. Notes ----- This function does *not* initialize the returned array; to do that use - `zeros_like` or `ones_like` instead. + `zeros_like` or `ones_like` instead. It may be marginally faster than the + functions that do set the array values. Examples -------- - >>> a = np.array([[1,2,3],[4,5,6]]) + >>> a = ([1,2,3], [4,5,6]) # a is array-like >>> np.empty_like(a) + array([[-1073741821, -1073741821, 3], #random + [ 0, 0, -1073741821]]) + >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) - array([[-1073741821, -1067702173, 65538], #random data - [ 25670, 23454291, 71800]]) + array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], #random + [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) """ if isinstance(a, ndarray): @@ -1661,11 +1675,11 @@ def base_repr (number, base=2, padding=0): ---------- number : scalar The value to convert. Only positive values are handled. - base : int + base : int, optional Convert `number` to the `base` number system. The valid range is 2-36, the default value is 2. padding : int, optional - Number of zeros padded on the left. + Number of zeros padded on the left. Default is 0 (no padding). Returns ------- @@ -1679,13 +1693,18 @@ def base_repr (number, base=2, padding=0): Examples -------- - >>> np.base_repr(3, 5) - '3' + >>> np.base_repr(5) + '101' >>> np.base_repr(6, 5) '11' >>> np.base_repr(7, base=5, padding=3) '00012' + >>> np.base_repr(10, base=16) + 'A' + >>> np.base_repr(32, base=16) + '20' + """ if number < 0: raise ValueError("negative numbers not handled in base_repr") |