summaryrefslogtreecommitdiff
path: root/numpy/core
diff options
context:
space:
mode:
authorTyler Reddy <tyler.je.reddy@gmail.com>2018-12-05 11:48:11 -0800
committerTyler Reddy <tyler.je.reddy@gmail.com>2018-12-14 10:14:05 -0800
commit577a86e30014382c3fed1319379caa8728842543 (patch)
tree14043b6b19c88dc087e87fba20f9500a331b06db /numpy/core
parent0bdc587d6cf5e6806e95d9debcafe62ac9f1d7fa (diff)
downloadnumpy-577a86e30014382c3fed1319379caa8728842543.tar.gz
MAINT: >>> # style cleanups requested
* reviewer requested that the cases where I switched from free-floating comments to `>>> # comments` be reverted to free-floating in docstrings
Diffstat (limited to 'numpy/core')
-rw-r--r--numpy/core/_add_newdocs.py10
-rw-r--r--numpy/core/einsumfunc.py16
-rw-r--r--numpy/core/fromnumeric.py8
3 files changed, 21 insertions, 13 deletions
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py
index 60cb62bb5..80fa1466e 100644
--- a/numpy/core/_add_newdocs.py
+++ b/numpy/core/_add_newdocs.py
@@ -317,8 +317,8 @@ add_newdoc('numpy.core', 'nditer',
Examples
--------
- >>> #Here is how we might write an ``iter_add`` function, using the
- >>> #Python iterator protocol::
+ Here is how we might write an ``iter_add`` function, using the
+ Python iterator protocol::
>>> def iter_add_py(x, y, out=None):
... addop = np.add
@@ -329,7 +329,7 @@ add_newdoc('numpy.core', 'nditer',
... addop(a, b, out=c)
... return it.operands[2]
- >>> # Here is the same function, but following the C-style pattern::
+ Here is the same function, but following the C-style pattern::
>>> def iter_add(x, y, out=None):
... addop = np.add
@@ -341,7 +341,7 @@ add_newdoc('numpy.core', 'nditer',
... it.iternext()
... return it.operands[2]
- >>> # Here is an example outer product function::
+ Here is an example outer product function::
>>> def outer_it(x, y, out=None):
... mulop = np.multiply
@@ -361,7 +361,7 @@ add_newdoc('numpy.core', 'nditer',
array([[1, 2, 3],
[2, 4, 6]])
- >>> # Here is an example function which operates like a "lambda" ufunc::
+ Here is an example function which operates like a "lambda" ufunc::
>>> def luf(lamdaexpr, *args, **kwargs):
... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
diff --git a/numpy/core/einsumfunc.py b/numpy/core/einsumfunc.py
index d5fdca785..83b7d8287 100644
--- a/numpy/core/einsumfunc.py
+++ b/numpy/core/einsumfunc.py
@@ -1324,16 +1324,24 @@ def einsum(*operands, **kwargs):
particularly significant with larger arrays:
>>> a = np.ones(64).reshape(2,4,8)
- >>> # Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
+
+ Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
+
>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
- >>> # Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
+
+ Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
+
>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
- >>> # Greedy `einsum` (faster optimal path approximation): ~160ms
+
+ Greedy `einsum` (faster optimal path approximation): ~160ms
+
>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
- >>> # Optimal `einsum` (best usage pattern in some use cases): ~110ms
+
+ Optimal `einsum` (best usage pattern in some use cases): ~110ms
+
>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 474556b30..240eac6ce 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -1645,7 +1645,7 @@ def ravel(a, order='C'):
Examples
--------
- >>> # It is equivalent to ``reshape(-1, order=order)``.
+ It is equivalent to ``reshape(-1, order=order)``.
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.ravel(x)
@@ -1657,15 +1657,15 @@ def ravel(a, order='C'):
>>> np.ravel(x, order='F')
array([1, 4, 2, 5, 3, 6])
- >>> # When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:
+ When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:
>>> np.ravel(x.T)
array([1, 4, 2, 5, 3, 6])
>>> np.ravel(x.T, order='A')
array([1, 2, 3, 4, 5, 6])
- >>> # When ``order`` is 'K', it will preserve orderings that are neither 'C'
- >>> # nor 'F', but won't reverse axes:
+ When ``order`` is 'K', it will preserve orderings that are neither 'C'
+ nor 'F', but won't reverse axes:
>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])