summaryrefslogtreecommitdiff
path: root/numpy/core
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2006-01-04 19:00:27 +0000
committerTravis Oliphant <oliphant@enthought.com>2006-01-04 19:00:27 +0000
commite706c7d92c4ee41e8e995fb3838bd0931b57efb5 (patch)
tree015a057d49422774e49ed211a37c14105d03a713 /numpy/core
parentc14d4fe25cb5cd482369734dd487ac8f376851c9 (diff)
downloadnumpy-e706c7d92c4ee41e8e995fb3838bd0931b57efb5.tar.gz
Changed all references to scipy to numpy
Diffstat (limited to 'numpy/core')
-rw-r--r--numpy/core/__init__.py4
-rw-r--r--numpy/core/arrayprint.py2
-rw-r--r--numpy/core/blasdot/_dotblas.c6
-rw-r--r--numpy/core/code_generators/array_api_order.txt2
-rw-r--r--numpy/core/code_generators/generate_array_api.py2
-rw-r--r--numpy/core/code_generators/generate_ufunc_api.py2
-rw-r--r--numpy/core/ma.py10
-rw-r--r--numpy/core/matrix.py2
-rw-r--r--numpy/core/src/_sortmodule.c.src2
-rw-r--r--numpy/core/src/arraymethods.c2
-rw-r--r--numpy/core/src/arrayobject.c26
-rw-r--r--numpy/core/src/multiarraymodule.c18
-rw-r--r--numpy/core/src/scalarmathmodule.c.src4
-rw-r--r--numpy/core/src/scalartypes.inc.src6
-rw-r--r--numpy/core/src/ufuncobject.c2
-rw-r--r--numpy/core/src/umathmodule.c.src4
-rw-r--r--numpy/core/tests/test_ma.py132
-rw-r--r--numpy/core/tests/test_matrix.py10
-rw-r--r--numpy/core/tests/test_records.py8
-rw-r--r--numpy/core/tests/test_umath.py4
20 files changed, 124 insertions, 124 deletions
diff --git a/numpy/core/__init__.py b/numpy/core/__init__.py
index 0c0c158df..18256f03e 100644
--- a/numpy/core/__init__.py
+++ b/numpy/core/__init__.py
@@ -1,6 +1,6 @@
from info import __doc__
-from scipy.core_version import version as __version__
+from numpy.core_version import version as __version__
import multiarray
import umath
@@ -33,5 +33,5 @@ from utils import *
__all__ = filter(lambda s:not s.startswith('_'),dir())
-from scipy.testing import ScipyTest
+from numpy.testing import ScipyTest
test = ScipyTest().test
diff --git a/numpy/core/arrayprint.py b/numpy/core/arrayprint.py
index 6a5e4b23b..76784473e 100644
--- a/numpy/core/arrayprint.py
+++ b/numpy/core/arrayprint.py
@@ -10,7 +10,7 @@ __all__ = ["set_summary", "summary_off", "set_precision", "set_line_width",
# last revision: 1996-3-13
# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
# and by Perry Greenfield 2000-4-1 for numarray
-# and by Travis Oliphant 2005-8-22 for scipy.base
+# and by Travis Oliphant 2005-8-22 for numpy.base
import sys
import numeric as _gen
diff --git a/numpy/core/blasdot/_dotblas.c b/numpy/core/blasdot/_dotblas.c
index 648ea397f..51d9fa1a2 100644
--- a/numpy/core/blasdot/_dotblas.c
+++ b/numpy/core/blasdot/_dotblas.c
@@ -1,8 +1,8 @@
static char module_doc[] =
-"This module provides a BLAS optimized\nmatrix multiply, inner product and dot for scipy arrays";
+"This module provides a BLAS optimized\nmatrix multiply, inner product and dot for numpy arrays";
#include "Python.h"
-#include "scipy/arrayobject.h"
+#include "numpy/arrayobject.h"
#ifndef CBLAS_HEADER
#define CBLAS_HEADER "cblas.h"
#endif
@@ -128,7 +128,7 @@ dotblas_restoredot(PyObject *dummy, PyObject *args)
}
-static char doc_matrixproduct[] = "matrixproduct(a,b)\nReturns the dot product of a and b for arrays of floating point types.\nLike the generic scipy equivalent the product sum is over\nthe last dimension of a and the second-to-last dimension of b.\nNB: The first argument is not conjugated.";
+static char doc_matrixproduct[] = "matrixproduct(a,b)\nReturns the dot product of a and b for arrays of floating point types.\nLike the generic numpy equivalent the product sum is over\nthe last dimension of a and the second-to-last dimension of b.\nNB: The first argument is not conjugated.";
static PyObject *
dotblas_matrixproduct(PyObject *dummy, PyObject *args)
diff --git a/numpy/core/code_generators/array_api_order.txt b/numpy/core/code_generators/array_api_order.txt
index 154373592..74ab84f6a 100644
--- a/numpy/core/code_generators/array_api_order.txt
+++ b/numpy/core/code_generators/array_api_order.txt
@@ -1,4 +1,4 @@
-# The functions in the scipy_core C API
+# The functions in the numpy_core C API
# They are defined here so that the order is set.
PyArray_SetNumericOps
PyArray_GetNumericOps
diff --git a/numpy/core/code_generators/generate_array_api.py b/numpy/core/code_generators/generate_array_api.py
index e4ec8b2e1..6d2bce00d 100644
--- a/numpy/core/code_generators/generate_array_api.py
+++ b/numpy/core/code_generators/generate_array_api.py
@@ -51,7 +51,7 @@ static void **PyArray_API=NULL;
static int
import_array(void)
{
- PyObject *numpy = PyImport_ImportModule("scipy.base.multiarray");
+ PyObject *numpy = PyImport_ImportModule("numpy.base.multiarray");
PyObject *c_api = NULL;
if (numpy == NULL) return -1;
c_api = PyObject_GetAttrString(numpy, "_ARRAY_API");
diff --git a/numpy/core/code_generators/generate_ufunc_api.py b/numpy/core/code_generators/generate_ufunc_api.py
index 59c808e36..6c9307058 100644
--- a/numpy/core/code_generators/generate_ufunc_api.py
+++ b/numpy/core/code_generators/generate_ufunc_api.py
@@ -31,7 +31,7 @@ static void **PyUFunc_API=NULL;
static int
import_ufunc(void)
{
- PyObject *numpy = PyImport_ImportModule("scipy.base.umath");
+ PyObject *numpy = PyImport_ImportModule("numpy.base.umath");
PyObject *c_api = NULL;
if (numpy == NULL) return -1;
diff --git a/numpy/core/ma.py b/numpy/core/ma.py
index 245351349..439c311ab 100644
--- a/numpy/core/ma.py
+++ b/numpy/core/ma.py
@@ -1,10 +1,10 @@
"""MA: a facility for dealing with missing observations
-MA is generally used as a scipy.array look-alike.
+MA is generally used as a numpy.array look-alike.
by Paul F. Dubois.
Copyright 1999, 2000, 2001 Regents of the University of California.
Released for unlimited redistribution.
-Adapted for scipy_core 2005 by Travis Oliphant and
+Adapted for numpy_core 2005 by Travis Oliphant and
(mainly) Paul Dubois.
"""
import string, types, sys
@@ -2015,7 +2015,7 @@ def argsort (x, axis = -1, fill_value=None):
"""Treating masked values as if they have the value fill_value,
return sort indices for sorting along given axis.
if fill_value is None, use get_fill_value(x)
- Returns a scipy array.
+ Returns a numpy array.
"""
d = filled(x, fill_value)
return oldnumeric.argsort(d, axis)
@@ -2024,7 +2024,7 @@ def argmin (x, axis = -1, fill_value=None):
"""Treating masked values as if they have the value fill_value,
return indices for minimum values along given axis.
if fill_value is None, use get_fill_value(x).
- Returns a scipy array if x has more than one dimension.
+ Returns a numpy array if x has more than one dimension.
Otherwise, returns a scalar index.
"""
d = filled(x, fill_value)
@@ -2034,7 +2034,7 @@ def argmax (x, axis = -1, fill_value=None):
"""Treating masked values as if they have the value fill_value,
return sort indices for maximum along given axis.
if fill_value is None, use -get_fill_value(x) if it exists.
- Returns a scipy array if x has more than one dimension.
+ Returns a numpy array if x has more than one dimension.
Otherwise, returns a scalar index.
"""
if fill_value is None:
diff --git a/numpy/core/matrix.py b/numpy/core/matrix.py
index 1c7ca7cca..0b064ddd7 100644
--- a/numpy/core/matrix.py
+++ b/numpy/core/matrix.py
@@ -200,7 +200,7 @@ class matrix(N.ndarray):
return self.transpose()
def getI(self):
- from scipy.corelinalg import inv
+ from numpy.corelinalg import inv
return matrix(inv(self))
A = property(getA, None, doc="base array")
diff --git a/numpy/core/src/_sortmodule.c.src b/numpy/core/src/_sortmodule.c.src
index 47c7520c1..8f40e47ee 100644
--- a/numpy/core/src/_sortmodule.c.src
+++ b/numpy/core/src/_sortmodule.c.src
@@ -24,7 +24,7 @@
#include "Python.h"
-#include "scipy/arrayobject.h"
+#include "numpy/arrayobject.h"
#define PYA_QS_STACK 100
#define SMALL_QUICKSORT 15
diff --git a/numpy/core/src/arraymethods.c b/numpy/core/src/arraymethods.c
index 2b7a53042..2e5ea4ee4 100644
--- a/numpy/core/src/arraymethods.c
+++ b/numpy/core/src/arraymethods.c
@@ -864,7 +864,7 @@ array_reduce(PyArrayObject *self, PyObject *args)
ret = PyTuple_New(3);
if (ret == NULL) return NULL;
- mod = PyImport_ImportModule("scipy.base._internal");
+ mod = PyImport_ImportModule("numpy.base._internal");
if (mod == NULL) {Py_DECREF(ret); return NULL;}
obj = PyObject_GetAttrString(mod, "_reconstruct");
Py_DECREF(mod);
diff --git a/numpy/core/src/arrayobject.c b/numpy/core/src/arrayobject.c
index 72db76373..1d9e15976 100644
--- a/numpy/core/src/arrayobject.c
+++ b/numpy/core/src/arrayobject.c
@@ -3922,7 +3922,7 @@ array_ndim_get(PyArrayObject *self)
static PyObject *
array_flags_get(PyArrayObject *self)
{
- return PyObject_CallMethod(_scipy_internal, "flagsobj", "Oii",
+ return PyObject_CallMethod(_numpy_internal, "flagsobj", "Oii",
self, self->flags, 0);
}
@@ -4648,9 +4648,9 @@ static char Arraytype__doc__[] =
"A array object represents a multidimensional, homogeneous array\n"
" of fixed-size items. An associated data-type-descriptor object\n"
" details the data-type in an array (including byteorder and any\n"
- " fields). An array can be constructed using the scipy.array\n"
+ " fields). An array can be constructed using the numpy.array\n"
" command. Arrays are sequence, mapping and numeric objects.\n"
- " More information is available in the scipy module and by looking\n"
+ " More information is available in the numpy module and by looking\n"
" at the methods and attributes of an array.\n\n"
" ndarray.__new__(subtype, shape=, dtype=int_, buffer=None, \n"
" offset=0, strides=None, fortran=False)\n\n"
@@ -4660,14 +4660,14 @@ static char Arraytype__doc__[] =
" 2) If buffer is an object exporting the buffer interface, then\n"
" all keywords are interpreted.\n"
" The dtype parameter can be any object that can be interpreted \n"
- " as a scipy.dtypedescr object.\n\n"
+ " as a numpy.dtypedescr object.\n\n"
" No __init__ method is needed because the array is fully \n"
" initialized after the __new__ method.";
static PyTypeObject PyBigArray_Type = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
- "scipy.bigndarray", /*tp_name*/
+ "numpy.bigndarray", /*tp_name*/
sizeof(PyArrayObject), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
@@ -4733,7 +4733,7 @@ static PyTypeObject PyBigArray_Type = {
static PyTypeObject PyArray_Type = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
- "scipy.ndarray", /*tp_name*/
+ "numpy.ndarray", /*tp_name*/
sizeof(PyArrayObject), /*tp_basicsize*/
0, /*tp_itemsize*/
};
@@ -6192,7 +6192,7 @@ PyArray_CanCastTo(PyArray_Descr *from, PyArray_Descr *to)
/*********************** Element-wise Array Iterator ***********************/
-/* Aided by Peter J. Verveer's nd_image package and scipy's arraymap ****/
+/* Aided by Peter J. Verveer's nd_image package and numpy's arraymap ****/
/* and Python's array iterator ***/
@@ -6841,7 +6841,7 @@ static PyMemberDef iter_members[] = {
static PyTypeObject PyArrayIter_Type = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
- "scipy.flatiter", /* tp_name */
+ "numpy.flatiter", /* tp_name */
sizeof(PyArrayIterObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
@@ -7543,7 +7543,7 @@ arraymapiter_dealloc(PyArrayMapIterObject *mit)
static PyTypeObject PyArrayMapIter_Type = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
- "scipy.mapiter", /* tp_name */
+ "numpy.mapiter", /* tp_name */
sizeof(PyArrayIterObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
@@ -7821,7 +7821,7 @@ static PyMethodDef arraymultiter_methods[] = {
static PyTypeObject PyArrayMultiIter_Type = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
- "scipy.broadcast", /* tp_name */
+ "numpy.broadcast", /* tp_name */
sizeof(PyArrayMultiIterObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
@@ -7996,7 +7996,7 @@ arraydescr_protocol_descr_get(PyArray_Descr *self)
return res;
}
- return PyObject_CallMethod(_scipy_internal, "_array_descr",
+ return PyObject_CallMethod(_numpy_internal, "_array_descr",
"O", self);
}
@@ -8134,7 +8134,7 @@ arraydescr_reduce(PyArray_Descr *self, PyObject *args)
ret = PyTuple_New(3);
if (ret == NULL) return NULL;
- mod = PyImport_ImportModule("scipy.base.multiarray");
+ mod = PyImport_ImportModule("numpy.base.multiarray");
if (mod == NULL) {Py_DECREF(ret); return NULL;}
obj = PyObject_GetAttrString(mod, "dtypedescr");
Py_DECREF(mod);
@@ -8424,7 +8424,7 @@ arraydescr_compare(PyArray_Descr *self, PyObject *other)
static PyTypeObject PyArrayDescr_Type = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
- "scipy.dtypedescr", /* tp_name */
+ "numpy.dtypedescr", /* tp_name */
sizeof(PyArray_Descr), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
diff --git a/numpy/core/src/multiarraymodule.c b/numpy/core/src/multiarraymodule.c
index 2cce9ad03..6c993b069 100644
--- a/numpy/core/src/multiarraymodule.c
+++ b/numpy/core/src/multiarraymodule.c
@@ -5,7 +5,7 @@
Original file
Copyright (c) 1995, 1996, 1997 Jim Hugunin, hugunin@mit.edu
- Modified for scipy_core in 2005
+ Modified for numpy_core in 2005
Travis E. Oliphant
Assistant Professor at
@@ -22,12 +22,12 @@
*/
#define _MULTIARRAYMODULE
-#include "scipy/arrayobject.h"
+#include "numpy/arrayobject.h"
#define PyAO PyArrayObject
static PyObject *typeDict=NULL; /* Must be explicitly loaded */
-static PyObject *_scipy_internal=NULL; /* A Python module for callbacks */
+static PyObject *_numpy_internal=NULL; /* A Python module for callbacks */
static PyArray_Descr *
@@ -3544,7 +3544,7 @@ _convert_from_commastring(PyObject *obj, int align)
PyArray_Descr *res;
if (!PyString_Check(obj)) return NULL;
- listobj = PyObject_CallMethod(_scipy_internal, "_commastring",
+ listobj = PyObject_CallMethod(_numpy_internal, "_commastring",
"O", obj);
if (!listobj) return NULL;
res = _convert_from_list(listobj, align, 0);
@@ -3593,7 +3593,7 @@ then it will be checked for conformity and used directly.
static PyArray_Descr *
_use_fields_dict(PyObject *obj, int align)
{
- return (PyArray_Descr *)PyObject_CallMethod(_scipy_internal,
+ return (PyArray_Descr *)PyObject_CallMethod(_numpy_internal,
"_usefields",
"Oi", obj, align);
}
@@ -3734,7 +3734,7 @@ PyArray_DescrConverter2(PyObject *obj, PyArray_Descr **at)
quite a flexible concept.
This is the central code that converts Python objects to
- Type-descriptor objects that are used throughout scipy.
+ Type-descriptor objects that are used throughout numpy.
*/
/* new reference in *at */
@@ -5492,9 +5492,9 @@ DL_EXPORT(void) initmultiarray(void) {
if (set_typeinfo(d) != 0) goto err;
- _scipy_internal = \
- PyImport_ImportModule("scipy.base._internal");
- if (_scipy_internal != NULL) return;
+ _numpy_internal = \
+ PyImport_ImportModule("numpy.base._internal");
+ if (_numpy_internal != NULL) return;
err:
/* Check for errors */
diff --git a/numpy/core/src/scalarmathmodule.c.src b/numpy/core/src/scalarmathmodule.c.src
index dc2c3c198..ec210d42e 100644
--- a/numpy/core/src/scalarmathmodule.c.src
+++ b/numpy/core/src/scalarmathmodule.c.src
@@ -4,8 +4,8 @@
NOT FINISHED
*/
-#include "scipy/arrayobject.h"
-#include "scipy/ufuncobject.h"
+#include "numpy/arrayobject.h"
+#include "numpy/ufuncobject.h"
/**begin repeat
diff --git a/numpy/core/src/scalartypes.inc.src b/numpy/core/src/scalartypes.inc.src
index 629adbcf0..972b2424f 100644
--- a/numpy/core/src/scalartypes.inc.src
+++ b/numpy/core/src/scalartypes.inc.src
@@ -641,14 +641,14 @@ gentype_flags_get(PyObject *self)
{
static int flags=CONTIGUOUS | OWNDATA | FORTRAN | ALIGNED;
- return PyObject_CallMethod(_scipy_internal, "flagsobj", "Oii",
+ return PyObject_CallMethod(_numpy_internal, "flagsobj", "Oii",
self, flags, 1);
}
static PyObject *
voidtype_flags_get(PyVoidScalarObject *self)
{
- return PyObject_CallMethod(_scipy_internal, "flagsobj", "Oii",
+ return PyObject_CallMethod(_numpy_internal, "flagsobj", "Oii",
self, self->flags, 1);
}
@@ -1194,7 +1194,7 @@ gentype_reduce(PyObject *self, PyObject *args)
if (PyObject_AsReadBuffer(self, (const void **)&buffer, &buflen)<0) {
Py_DECREF(ret); return NULL;
}
- mod = PyImport_ImportModule("scipy.base.multiarray");
+ mod = PyImport_ImportModule("numpy.base.multiarray");
if (mod == NULL) return NULL;
obj = PyObject_GetAttrString(mod, "scalar");
Py_DECREF(mod);
diff --git a/numpy/core/src/ufuncobject.c b/numpy/core/src/ufuncobject.c
index 47aad4828..1b5a5f31f 100644
--- a/numpy/core/src/ufuncobject.c
+++ b/numpy/core/src/ufuncobject.c
@@ -3119,7 +3119,7 @@ static char Ufunctype__doc__[] =
static PyTypeObject PyUFunc_Type = {
PyObject_HEAD_INIT(0)
0, /*ob_size*/
- "scipy.ufunc", /*tp_name*/
+ "numpy.ufunc", /*tp_name*/
sizeof(PyUFuncObject), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
diff --git a/numpy/core/src/umathmodule.c.src b/numpy/core/src/umathmodule.c.src
index 5096f3361..dd140354b 100644
--- a/numpy/core/src/umathmodule.c.src
+++ b/numpy/core/src/umathmodule.c.src
@@ -1,9 +1,9 @@
/* -*- c -*- */
#include "Python.h"
-#include "scipy/arrayobject.h"
+#include "numpy/arrayobject.h"
#define _UMATHMODULE
-#include "scipy/ufuncobject.h"
+#include "numpy/ufuncobject.h"
#include "abstract.h"
#include <math.h>
diff --git a/numpy/core/tests/test_ma.py b/numpy/core/tests/test_ma.py
index 884a4a277..5a6c95533 100644
--- a/numpy/core/tests/test_ma.py
+++ b/numpy/core/tests/test_ma.py
@@ -1,7 +1,7 @@
-import scipy
+import numpy
import types, time
-from scipy.base.ma import *
-from scipy.testing import ScipyTestCase, ScipyTest
+from numpy.base.ma import *
+from numpy.testing import ScipyTestCase, ScipyTest
def eq(v,w):
result = allclose(v,w)
if not result:
@@ -17,16 +17,16 @@ class test_ma(ScipyTestCase):
self.setUp()
def setUp (self):
- x=scipy.array([1.,1.,1.,-2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
- y=scipy.array([5.,0.,3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ x=numpy.array([1.,1.,1.,-2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y=numpy.array([5.,0.,3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0 ,0, 1]
xm = array(x, mask=m1)
ym = array(y, mask=m2)
- z = scipy.array([-.5, 0., .5, .8])
+ z = numpy.array([-.5, 0., .5, .8])
zm = array(z, mask=[0,1,0,0])
- xf = scipy.where(m1, 1.e+20, x)
+ xf = numpy.where(m1, 1.e+20, x)
s = x.shape
xm.set_fill_value(1.e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s)
@@ -97,41 +97,41 @@ class test_ma(ScipyTestCase):
self.failUnless(eq(x**2, xm**2))
self.failUnless(eq(abs(x)**2.5, abs(xm) **2.5))
self.failUnless(eq(x**y, xm**ym))
- self.failUnless(eq(scipy.add(x,y), add(xm, ym)))
- self.failUnless(eq(scipy.subtract(x,y), subtract(xm, ym)))
- self.failUnless(eq(scipy.multiply(x,y), multiply(xm, ym)))
- self.failUnless(eq(scipy.divide(x,y), divide(xm, ym)))
+ self.failUnless(eq(numpy.add(x,y), add(xm, ym)))
+ self.failUnless(eq(numpy.subtract(x,y), subtract(xm, ym)))
+ self.failUnless(eq(numpy.multiply(x,y), multiply(xm, ym)))
+ self.failUnless(eq(numpy.divide(x,y), divide(xm, ym)))
def check_testUfuncs1 (self):
"Test various functions such as sin, cos."
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
- self.failUnless (eq(scipy.cos(x), cos(xm)))
- self.failUnless (eq(scipy.cosh(x), cosh(xm)))
- self.failUnless (eq(scipy.sin(x), sin(xm)))
- self.failUnless (eq(scipy.sinh(x), sinh(xm)))
- self.failUnless (eq(scipy.tan(x), tan(xm)))
- self.failUnless (eq(scipy.tanh(x), tanh(xm)))
- self.failUnless (eq(scipy.sqrt(abs(x)), sqrt(xm)))
- self.failUnless (eq(scipy.log(abs(x)), log(xm)))
- self.failUnless (eq(scipy.log10(abs(x)), log10(xm)))
- self.failUnless (eq(scipy.exp(x), exp(xm)))
- self.failUnless (eq(scipy.arcsin(z), arcsin(zm)))
- self.failUnless (eq(scipy.arccos(z), arccos(zm)))
- self.failUnless (eq(scipy.arctan(z), arctan(zm)))
- self.failUnless (eq(scipy.arctan2(x, y), arctan2(xm, ym)))
- self.failUnless (eq(scipy.absolute(x), absolute(xm)))
- self.failUnless (eq(scipy.equal(x,y), equal(xm, ym)))
- self.failUnless (eq(scipy.not_equal(x,y), not_equal(xm, ym)))
- self.failUnless (eq(scipy.less(x,y), less(xm, ym)))
- self.failUnless (eq(scipy.greater(x,y), greater(xm, ym)))
- self.failUnless (eq(scipy.less_equal(x,y), less_equal(xm, ym)))
- self.failUnless (eq(scipy.greater_equal(x,y), greater_equal(xm, ym)))
- self.failUnless (eq(scipy.conjugate(x), conjugate(xm)))
- self.failUnless (eq(scipy.concatenate((x,y)), concatenate((xm,ym))))
- self.failUnless (eq(scipy.concatenate((x,y)), concatenate((x,y))))
- self.failUnless (eq(scipy.concatenate((x,y)), concatenate((xm,y))))
- self.failUnless (eq(scipy.concatenate((x,y,x)), concatenate((x,ym,x))))
+ self.failUnless (eq(numpy.cos(x), cos(xm)))
+ self.failUnless (eq(numpy.cosh(x), cosh(xm)))
+ self.failUnless (eq(numpy.sin(x), sin(xm)))
+ self.failUnless (eq(numpy.sinh(x), sinh(xm)))
+ self.failUnless (eq(numpy.tan(x), tan(xm)))
+ self.failUnless (eq(numpy.tanh(x), tanh(xm)))
+ self.failUnless (eq(numpy.sqrt(abs(x)), sqrt(xm)))
+ self.failUnless (eq(numpy.log(abs(x)), log(xm)))
+ self.failUnless (eq(numpy.log10(abs(x)), log10(xm)))
+ self.failUnless (eq(numpy.exp(x), exp(xm)))
+ self.failUnless (eq(numpy.arcsin(z), arcsin(zm)))
+ self.failUnless (eq(numpy.arccos(z), arccos(zm)))
+ self.failUnless (eq(numpy.arctan(z), arctan(zm)))
+ self.failUnless (eq(numpy.arctan2(x, y), arctan2(xm, ym)))
+ self.failUnless (eq(numpy.absolute(x), absolute(xm)))
+ self.failUnless (eq(numpy.equal(x,y), equal(xm, ym)))
+ self.failUnless (eq(numpy.not_equal(x,y), not_equal(xm, ym)))
+ self.failUnless (eq(numpy.less(x,y), less(xm, ym)))
+ self.failUnless (eq(numpy.greater(x,y), greater(xm, ym)))
+ self.failUnless (eq(numpy.less_equal(x,y), less_equal(xm, ym)))
+ self.failUnless (eq(numpy.greater_equal(x,y), greater_equal(xm, ym)))
+ self.failUnless (eq(numpy.conjugate(x), conjugate(xm)))
+ self.failUnless (eq(numpy.concatenate((x,y)), concatenate((xm,ym))))
+ self.failUnless (eq(numpy.concatenate((x,y)), concatenate((x,y))))
+ self.failUnless (eq(numpy.concatenate((x,y)), concatenate((xm,y))))
+ self.failUnless (eq(numpy.concatenate((x,y,x)), concatenate((x,ym,x))))
def check_xtestCount (self):
"Test count"
@@ -150,7 +150,7 @@ class test_ma(ScipyTestCase):
def check_testMinMax (self):
"Test minimum and maximum."
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
- xr = scipy.ravel(x) #max doesn't work if shaped
+ xr = numpy.ravel(x) #max doesn't work if shaped
xmr = ravel(xm)
self.failUnless (eq(max(xr), maximum(xmr))) #true because of careful selection of data
self.failUnless (eq(min(xr), minimum(xmr))) #true because of careful selection of data
@@ -158,32 +158,32 @@ class test_ma(ScipyTestCase):
def check_testAddSumProd (self):
"Test add, sum, product."
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
- self.failUnless (eq(scipy.add.reduce(x), add.reduce(x)))
- self.failUnless (eq(scipy.add.accumulate(x), add.accumulate(x)))
+ self.failUnless (eq(numpy.add.reduce(x), add.reduce(x)))
+ self.failUnless (eq(numpy.add.accumulate(x), add.accumulate(x)))
self.failUnless (eq(4, sum(array(4))))
self.failUnless (eq(4, sum(array(4), axis=0)))
- self.failUnless (eq(scipy.sum(x), sum(x)))
- self.failUnless (eq(scipy.sum(filled(xm,0)), sum(xm)))
- self.failUnless (eq(scipy.sum(x,0), sum(x,0)))
- self.failUnless (eq(scipy.product(x), product(x)))
- self.failUnless (eq(scipy.product(x,0), product(x,0)))
- self.failUnless (eq(scipy.product(filled(xm,1)), product(xm)))
+ self.failUnless (eq(numpy.sum(x), sum(x)))
+ self.failUnless (eq(numpy.sum(filled(xm,0)), sum(xm)))
+ self.failUnless (eq(numpy.sum(x,0), sum(x,0)))
+ self.failUnless (eq(numpy.product(x), product(x)))
+ self.failUnless (eq(numpy.product(x,0), product(x,0)))
+ self.failUnless (eq(numpy.product(filled(xm,1)), product(xm)))
if len(s) > 1:
- self.failUnless (eq(scipy.concatenate((x,y),1), concatenate((xm,ym),1)))
- self.failUnless (eq(scipy.add.reduce(x,1), add.reduce(x,1)))
- self.failUnless (eq(scipy.sum(x,1), sum(x,1)))
- self.failUnless (eq(scipy.product(x,1), product(x,1)))
+ self.failUnless (eq(numpy.concatenate((x,y),1), concatenate((xm,ym),1)))
+ self.failUnless (eq(numpy.add.reduce(x,1), add.reduce(x,1)))
+ self.failUnless (eq(numpy.sum(x,1), sum(x,1)))
+ self.failUnless (eq(numpy.product(x,1), product(x,1)))
def check_testCI(self):
"Test of conversions and indexing"
- x1 = scipy.array([1,2,4,3])
+ x1 = numpy.array([1,2,4,3])
x2 = array(x1, mask = [1,0,0,0])
x3 = array(x1, mask = [0,1,0,1])
x4 = array(x1)
# test conversion to strings
junk, garbage = str(x2), repr(x2)
- assert eq(scipy.sort(x1),sort(x2, fill_value=0))
+ assert eq(numpy.sort(x1),sort(x2, fill_value=0))
# tests of indexing
assert type(x2[1]) is type(x1[1])
assert x1[1] == x2[1]
@@ -210,13 +210,13 @@ class test_ma(ScipyTestCase):
x4[:] = masked_array([1,2,3,4],[0,1,1,0])
assert allequal(getmask(x4), array([0,1,1,0]))
assert allequal(x4, array([1,2,3,4]))
- x1 = scipy.arange(5)*1.0
+ x1 = numpy.arange(5)*1.0
x2 = masked_values(x1, 3.0)
assert eq(x1,x2)
assert allequal(array([0,0,0,1,0],MaskType), x2.mask)
assert eq(3.0, x2.fill_value())
x1 = array([1,'hello',2,3],object)
- x2 = scipy.array([1,'hello',2,3],object)
+ x2 = numpy.array([1,'hello',2,3],object)
s1 = x1[1].item()
s2 = x2[1].item()
self.assertEqual(type(s2), str)
@@ -233,7 +233,7 @@ class test_ma(ScipyTestCase):
m3 = make_mask(m, copy=1)
self.failUnless(m is not m3)
- x1 = scipy.arange(5)
+ x1 = numpy.arange(5)
y1 = array(x1, mask=m)
self.failUnless( y1.raw_data() is not x1)
self.failUnless( allequal(x1,y1.raw_data()))
@@ -299,7 +299,7 @@ class test_ma(ScipyTestCase):
def check_testMaPut(self):
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]
- i = scipy.nonzero(m)
+ i = numpy.nonzero(m)
putmask(xm, m, z)
assert take(xm, i) == z
put(ym, i, zm)
@@ -411,15 +411,15 @@ class test_ma(ScipyTestCase):
def check_testTakeTransposeInnerOuter(self):
"Test of take, transpose, inner, outer products"
x = arange(24)
- y = scipy.arange(24)
+ y = numpy.arange(24)
x[5:6] = masked
x=x.reshape(2,3,4)
y=y.reshape(2,3,4)
- assert eq(scipy.transpose(y,(2,0,1)), transpose(x,(2,0,1)))
- assert eq(scipy.take(y, (2,0,1), 1), take(x, (2,0,1), 1))
- assert eq(scipy.innerproduct(filled(x,0),filled(y,0)),
+ assert eq(numpy.transpose(y,(2,0,1)), transpose(x,(2,0,1)))
+ assert eq(numpy.take(y, (2,0,1), 1), take(x, (2,0,1), 1))
+ assert eq(numpy.innerproduct(filled(x,0),filled(y,0)),
innerproduct(x, y))
- assert eq(scipy.outerproduct(filled(x,0),filled(y,0)),
+ assert eq(numpy.outerproduct(filled(x,0),filled(y,0)),
outerproduct(x, y))
y = array(['abc', 1, 'def', 2, 3], object)
y[2] = masked
@@ -530,8 +530,8 @@ class test_ma(ScipyTestCase):
self.failUnless(allclose(average(x), 2.5))
self.failUnless(allclose(average(x, weights=w1), 2.5))
y=array([arange(6), 2.0*arange(6)])
- self.failUnless(allclose(average(y, None), scipy.add.reduce(scipy.arange(6))*3./12.))
- self.failUnless(allclose(average(y, axis=0), scipy.arange(6) * 3./2.))
+ self.failUnless(allclose(average(y, None), numpy.add.reduce(numpy.arange(6))*3./12.))
+ self.failUnless(allclose(average(y, axis=0), numpy.arange(6) * 3./2.))
self.failUnless(allclose(average(y, axis=1), [average(x), average(x) * 2.0]))
self.failUnless(allclose(average(y, None, weights=w2), 20./6.))
self.failUnless(allclose(average(y, axis=0, weights=w2), [0.,1.,2.,3.,4.,10.]))
@@ -591,13 +591,13 @@ def timingTest():
print f.test_name
print """\
n = %7d
-scipy time (ms) %6.1f
+numpy time (ms) %6.1f
MA maskless ratio %6.1f
MA masked ratio %6.1f
""" % (n, t*1000.0, t1/t, t2/t)
def testta(n, f):
- x=scipy.arange(n) + 1.0
+ x=numpy.arange(n) + 1.0
tn0 = time.time()
z = f(x)
return time.time() - tn0
@@ -633,5 +633,5 @@ def testinplace(x):
testinplace.test_name = 'Inplace operations'
if __name__ == "__main__":
- ScipyTest('scipy.base.ma').run()
+ ScipyTest('numpy.base.ma').run()
#timingTest()
diff --git a/numpy/core/tests/test_matrix.py b/numpy/core/tests/test_matrix.py
index 59b0a131e..4deb9aa5e 100644
--- a/numpy/core/tests/test_matrix.py
+++ b/numpy/core/tests/test_matrix.py
@@ -1,8 +1,8 @@
-from scipy.testing import *
+from numpy.testing import *
set_package_path()
-import scipy.base;reload(scipy.base)
-from scipy.base import *
+import numpy.base;reload(numpy.base)
+from numpy.base import *
restore_path()
class test_ctor(ScipyTestCase):
@@ -26,7 +26,7 @@ class test_ctor(ScipyTestCase):
class test_properties(ScipyTestCase):
def test_basic(self):
- import scipy.corelinalg as linalg
+ import numpy.corelinalg as linalg
A = array([[1., 2.],
[3., 4.]])
@@ -94,7 +94,7 @@ class test_autocasting(ScipyTestCase):
class test_algebra(ScipyTestCase):
def test_basic(self):
- import scipy.corelinalg as linalg
+ import numpy.corelinalg as linalg
A = array([[1., 2.],
[3., 4.]])
diff --git a/numpy/core/tests/test_records.py b/numpy/core/tests/test_records.py
index 8135a55a8..cfdb2e9e3 100644
--- a/numpy/core/tests/test_records.py
+++ b/numpy/core/tests/test_records.py
@@ -1,10 +1,10 @@
-from scipy.testing import *
+from numpy.testing import *
set_package_path()
import os as _os
-import scipy.base;reload(scipy.base)
-from scipy.base import *
-from scipy.base import records as rec
+import numpy.base;reload(numpy.base)
+from numpy.base import *
+from numpy.base import records as rec
restore_path()
class test_fromrecords(ScipyTestCase):
diff --git a/numpy/core/tests/test_umath.py b/numpy/core/tests/test_umath.py
index 9cd99f7e1..6b4aa3221 100644
--- a/numpy/core/tests/test_umath.py
+++ b/numpy/core/tests/test_umath.py
@@ -1,7 +1,7 @@
-from scipy.testing import *
+from numpy.testing import *
set_package_path()
-from scipy.base.umath import minimum, maximum
+from numpy.base.umath import minimum, maximum
restore_path()