summaryrefslogtreecommitdiff
path: root/numpy/doc/basics.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2019-08-19 19:16:44 -0500
committerEric Wieser <wieser.eric@gmail.com>2019-08-19 19:16:44 -0500
commit0f5e376d3eb6118b783cdd3ecd27722c2d1934ba (patch)
treec44850b579cbd27993c45dda1a7922e2d109b24f /numpy/doc/basics.py
parent483f565d85dadc899f94710531fba8355d554d59 (diff)
parent98bdde643af6443d68a8c6233807b75bd3f0ed80 (diff)
downloadnumpy-0f5e376d3eb6118b783cdd3ecd27722c2d1934ba.tar.gz
Merge remote-tracking branch 'upstream/master' into fix-if-fields
Diffstat (limited to 'numpy/doc/basics.py')
-rw-r--r--numpy/doc/basics.py43
1 files changed, 41 insertions, 2 deletions
diff --git a/numpy/doc/basics.py b/numpy/doc/basics.py
index c87a40ccd..1871512bf 100644
--- a/numpy/doc/basics.py
+++ b/numpy/doc/basics.py
@@ -260,6 +260,45 @@ identical behaviour between arrays and scalars, irrespective of whether the
value is inside an array or not. NumPy scalars also have many of the same
methods arrays do.
+Overflow Errors
+===============
+
+The fixed size of NumPy numeric types may cause overflow errors when a value
+requires more memory than available in the data type. For example,
+`numpy.power` evaluates ``100 * 10 ** 8`` correctly for 64-bit integers,
+but gives 1874919424 (incorrect) for a 32-bit integer.
+
+ >>> np.power(100, 8, dtype=np.int64)
+ 10000000000000000
+ >>> np.power(100, 8, dtype=np.int32)
+ 1874919424
+
+The behaviour of NumPy and Python integer types differs significantly for
+integer overflows and may confuse users expecting NumPy integers to behave
+similar to Python's ``int``. Unlike NumPy, the size of Python's ``int`` is
+flexible. This means Python integers may expand to accommodate any integer and
+will not overflow.
+
+NumPy provides `numpy.iinfo` and `numpy.finfo` to verify the
+minimum or maximum values of NumPy integer and floating point values
+respectively ::
+
+ >>> np.iinfo(np.int) # Bounds of the default integer on this system.
+ iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)
+ >>> np.iinfo(np.int32) # Bounds of a 32-bit integer
+ iinfo(min=-2147483648, max=2147483647, dtype=int32)
+ >>> np.iinfo(np.int64) # Bounds of a 64-bit integer
+ iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)
+
+If 64-bit integers are still too small the result may be cast to a
+floating point number. Floating point numbers offer a larger, but inexact,
+range of possible values.
+
+ >>> np.power(100, 100, dtype=np.int64) # Incorrect even with 64-bit int
+ 0
+ >>> np.power(100, 100, dtype=np.float64)
+ 1e+200
+
Extended Precision
==================
@@ -275,8 +314,8 @@ compiler's ``long double`` available as ``np.longdouble`` (and
``np.clongdouble`` for the complex numbers). You can find out what your
numpy provides with ``np.finfo(np.longdouble)``.
-NumPy does not provide a dtype with more precision than C
-``long double``\\s; in particular, the 128-bit IEEE quad precision
+NumPy does not provide a dtype with more precision than C's
+``long double``\\; in particular, the 128-bit IEEE quad precision
data type (FORTRAN's ``REAL*16``\\) is not available.
For efficient memory alignment, ``np.longdouble`` is usually stored